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We consider a system of spins which have values _+ 1 and evolve according to 
a jump Markov process whose generator is the sum of two generators, one 
describing a spin-flip Glauber process, the other a Kawasaki (stirring) evolution. 
It was proven elsewhere that if the Kawasaki dynamics is speeded up by a factor 
e -2, then, in the limit e ~ 0 (continuum limit), propagation of chaos holds and 
the local magnetization solves a reaction-diffusion equation. We choose the 
parameters of the Glauber interaction so that the potential of the reaction term 
in the reaction-diffusion equation is a double-well potential with quartic maxi- 
mum at the origin. We assume further that for each e the system is in a finite 
interval of Z with e-1 sites and periodic boundary conditions. We specify the 
initial measure as the product measure with 0 spin average, thus obtaining, 
in the continuum limit, a constant magnetic profile equal to 0, which is a 
stationary unstable solution to the reaction-diffusion equation. We prove that at 
times of the order e ~/2 propagation of chaos does not hold any more and, in 
the limit as e ~ 0 ,  the state becomes a nontrivial superposition of Bernoulli 
measures with parameters corresponding to the minima of the reaction poten- 
tial. The coefficients of such a superposition depend on time (on the scale e -~/z) 
and at large times (on this scale) the coefficient of the term corresponding to the 
initial magnetization vanishes (transient bimodality). This differs from what was 
observed by De Masi, Presutti, and Vares, who considered a reaction potential 
with quadratic maximum and no bimodal effect was seen, as predicted by 
Broggi, Lugiato, and Colombo. 

KEY WORDS: Interacting particle systems; hydrodynamic behavior; critical 
fluctuations; escape from unstable equilibrium; bimodality. 
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with many components. While the evolution in such systems is determined 
by purely local interactions among its elementary parts, yet, as time goes 
by, a coherent behavior establishes throughout the system as described by 
macroscopic fields which evolve according to closed equations, referred to 
as the hydrodynamic equations for the system, nonlinear PDEs, in the most 
interesting cases. Physical fluids are the archetype of such a behavior: while 
molecules obey the Hamiltonian laws of motion, the evolution of the 
thermodynamic fields describing the macroscopic properties of the system 
is determined by Euler and Navier-Stokes types of equations. Completely 
different systems behave in an analogous fashion; many examples originate 
from biological systems, population dynamics, economic models, computer 
simulations (cellular automata), and so forth. The robustness of this 
behavior is a clue for its analysis; its persistence even in oversimplified 
models makes a mathematical investigation possible. In stochastic inter- 
acting particle systems such a transition from microscopic to macroscopic 
has been observed and, in several cases, analyzed with mathematical rigor, 
providing a clear understanding of the mechanisms which cause the 
development of the collective behavior. 

Such an analysis shows that the hydrodynamic equations describe the 
behavior of the system in the hydrodynamic or continuum limit, i.e., in the 
limit of very extended systems and very small gradients (of the extensive 
fields). The actual state of the system is therefore close to the predictions 
of the hydrodynamic equations, when approaching the hydrodynamic limit. 
Its small deviations are described by fluctuation fields, which have, in the 
limit, after proper normalization, Gaussian distribution. However, in critical 
situations, such fluctuations are amplified and they eventually become 
macroscopic. On such a longer time scale the Gaussian nature of their 
distribution is lost due to the appearance of nonlinear effects so that their 
evolution is described by nonlinear stochastic PDEs. 

A very beautiful example of such a behavior can be found in the 
experimental work of Meyer et aL 118~ They consider a Rayleigh-B6nard 
cell. By increasing the temperature difference between the two plates of the 
cell past a critical value, convective flows appear in the fluid. Slightly above 
the critical value the nonconvective state is unstable. In usual conditions 
the onset of convection is determined by external conditions, e.g., the 
geometry and nature of the walls of the container. The main problem in 
order to see possible intrinsic fluctuations in the system is to screen these 
and other external effects. This is achieved under very careful experimental 
conditions, as shown by the convective patterns, which no longer reflect 
the geometry of the container: at the early stage of the convection "they 
are irregularly arranged and vary randomly between experimental runs, 
suggesting the importance of stochastic effects during the pattern evolution." 
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We refer to ref. 18 for more details and to their figures for evidence of the 
above statements. 

Also from a mathematical point of view these phenomena have 
considerable interest. A hydrodynamic description in terms of macroscopic 
fields involves the validity of the law of large numbers, since the local value 
of a field represents the average of a corresponding local observable in a 
microscopically infinite but macroscopically infinitesimal region. By the law 
of large numbers such an average has a sharp value. In the phenomena we 
wish to discuss this is not the case. On a longer time scale the law of large 
numbers fails and the macroscopic description is given by a statistical 
mixture of profiles rather than by a single one. We shall observe this 
phenomenon in a spin system model whose hydrodynamic equation is a 
reaction-diffusion equation. The initial state is chosen in such a way that 
the limiting macroscopic profile is a stationary unstable solution to the 
macroscopic equation. Therefore on the time scale where the hydro- 
dynamic equation is derived, the actual microscopic state does not change 
remarkably. On a longer time scale, deviations become macroscopically 
important and eventually the system leaves its initial unstable equilibrium. 
The phenomenon is very sensitive to the structure of the microscopic inter- 
action. We consider here the case when the microscopic interaction leads to 
a reactive potential with a quartic maximum and compare the results with 
those in ref. 10 for the quadratic case. A qualitative and quantitative 
discussion and its physical implications are presented in the next section, 
woofs are reported in Sections 3 and 4, and in the Appendices some 
estimates of a more technical nature are established. 

A few more considerations before closing this section. Critical fluctua- 
tions appear also in the analysis of the long-time behavior of shock wave 
profiles. As observed in refs. 8, 9, 15, and 20 for some asymmetric simple 
exclusion processes, traveling wave profiles remain stable even at the 
microscopic level. Only their location becomes random: they rigidly 
fluctuate in space. As for the escape from an unstable equilibrium, we have 
here again a macroscopic solution (for an observer moving with the speed 
of the wave) which may not give the actual behavior of the system. The 
microscopic state in this case is, however, not unstable but only marginally 
stable. The onset of critical fluctuations occurs then on a much longer time 
scale and it produces a Brownian-like motion of the shock around its 
average position, the phenomenon being structurally similar to that 
occurring when studying small random perturbations of dynamical systems 
with stable manifolds. (6) 
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2. RESULTS 

The  M o d e l .  For each positive ~ such that ~-1 is an integer, we let 
Z~ be the set of all integers with the identification x = x + ~-1. We then 
consider a + 1-valued spin system in Z~, denote by a a spin configuration, 
i.e., an element of { - 1 ,  1}z% and by a(x), x e Z ~ ,  the spin at x in the 
configuration a. The Glauber + Kawasaki evolution on Z~ is the jump 
Markov process on { -  1, 1 }z~ with generator 

L ~ = e-2Lo + La (2.1) 

where, for any function f on { -  1, 1}z% 

L 0 f ( a ) =  ~ � 8 9  (2.2) 
x e Z ~  

LGf(a)  = ~ c(x, a ) [ f (a  x ) - f ( a ) ]  (2.3) 
x~Z~ 

a ~'~+1 is obtained from a by interchanging its values at x and x + l  
(stirring or Kawasaki dynamics), ~r ~ by flipping the spin a t  x (Glauber 
dynamics). The function c(x, o) is the flip intensity of the Glauber evolution 
and it is assumed to be (i) strictly positive, (ii) translationally 
invariant, i.e., 

c(x, o) = c(0, ~ + x) 

(a + x being the translate of o- to the left by x), and (iii) depending on 
finitely many spins of 0. 

We shall eventually restrict ourselves to a very specific choice of the 
Glauber intensities, namely 

c(x, a ) =  [ 1 -  la(x)  a ( x +  1)311-  �89 a ( x -  1)] 

[ 1 - ca(x) a(x + 2) a(x + 3) a(x + 4)] (2.4) 

where 1 > c > 1/4, and to simplify notation 

c = 3/4 

The reason for these choices will become clear later, for the moment it is 
convenient to keep c(x, 0) in its general form, namely as only specified by 
the conditions (i), (ii), and (iii). 

To complete the definition of the model, we choose the initial measure 
/ as the product probability on { -  1, 1 }z~ whose mean values are 

#~(a(x)) = m(ex) (2.5) 

where #~(f) denotes the expectation of f and re(r) in (2.5) is a smooth 
function on the unit circle whose absolute value does not exceed 1. We 
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shall denote by ~t~ the distribution of the spins at time t. Further assump- 
tions on re(r) will be made in due time. 

The hydrodynamic limit for this class of models was studied first in 
ref. 7, actually in a more general setup. The hydrodynamic equations are 
reaction-diffusion equations; more precisely, the following holds. For all 
integers n 

lim sup g~ a(x i  - m(ex i ,  t) = 0  (2.6) 
e ~ O  X l . . . X n  i ~ l  

where the sup in (2.6) is over all n-tuplets of distinct sites in Z~ and re(r, t) 

solves the equation 

~ m = ~ m - V ' (m) ,  re(r, O) = re(r) (2.7) 

- V ' ( m ) =  Vm(-- 20"(0 ) C(0, 0")) (2.8) 

Finally, Vm is the Bernoulli measure (product measure) with spin average 
equal to m. 

Equation (2.7) is the hydrodynamic equation for the model, while 
(2.6) represents a very strong form of the propagation-of-chaos property. 
Equation (2.8) has a very simple interpretation as the average spin change 
due to the Glauber interaction, where the average is taken with respect to 
a Bernoulli measure, an invariant measure for the stirring evolution alone. 
In fact, as is intuitively clear, when e ~ 0 the prefactor ~-2 in front of the 
stirring generator forces the spin configurations for the full evolution to be 
typical for the stirring evolution alone. 

These models have a very rich and interesting structure. If, for 
instance, V is a double-well potential, there is a soliton solution to (2.7) 
[namely a stationary solution which connects the two stable points 
(minima) of the potential; here we consider the whole space and not the 
unit circle, so the spin model has to be changed accordingly]. Traveling 
waves connecting the stable to the unstable point of the potential are also 
stationary solutions for a moving observer. Another critical solution to 
(2.7) is the constant profile with magnetization equal to the unstable point 
of the potential. In all these cases the considerations of the introduction 
apply. 

In this paper we shall restrict our attention to the case of the space- 
homogeneous, unstable equilibrium profile. This has already been studied 
in ref. 10 for a model with flipping intensities 

c(x,  a)  = = 1 -- 7 a ( x ) [ a ( x  + 1) + ~(x -- 1)] + 72o-(x + 1) a ( x  -- 1 ) (2.9a) 

1/2 < ~ ~< 1 (2.9b) 
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so that by (2.8) the potential V(m) becomes 

V(m) = �89 2 + �88 4 (2.10a) 

= 2(27 - 1 ), /3 = 272 (2.10b) 

Hence m(r)= 0, for all r (in the unit circle), is a stationary solution, so 
that, by (2.6), /~ converges to the Bernoulli measure with parameter 0, 
when e ---, 0 if t is kept fixed. If instead we let t depend on e in such a way 
that t ~ oo as e ~ 0, then it might happen that the intrinsic fluctuations 
describing the difference between the actual particle model and the limiting 
equation will make the particle model leave the unstable equilibrium so 
that the magnetization at such long times will reach a finite nonzero value. 
This is indeed what happens. In fact, as proven in ref. 10, 

1 -e(~)  
lira/~;log~ i=c(~)Vo+ (Vm*"~V_m*) (2.11) 
~ 0  2 

which holds for all r # (2e)-~; c(r) in (2.11) is the step function with value 
1 for z < (2e) -1 and 0 if the reverse inequality holds; _+m* are the minima 
of the potential V(m). We leave out the details of what happens when 

= (2c~) -1, they can be found in ref. 10. 
The above result states that there is a new critical time scale (log e - l )  

which describes the escape from the unstable equilibrium. What is a priori 
surprising is that such an escape is sharp and it happens at a deterministic 
time, when the phenomenon is observed in the proper time scale. There is 
a critical time=(2c~) -1 before which the magnetization is still 0, while 
afterward it equals either one of the two stable values ___m* (with equal 
probability). Even though the whole phenomenon originates from a 
stochastic fluctuation, the time when the magnetization becomes macro- 
scopic is fixed and it is not stochastic; the event is completely predictable. 
These kinds of phenomena are studied in laser physics and we learnt from 
ref. 3 that the case considered above is in a sense exceptional, namely for 
a reactive potential with a maximum flatter than quadratic one expects a 
completely different phenomenology for the escape from the unstable 
equilibrium. 

To check this on a true particle system we have chosen the intensities 
as in (2.4) so that the potential V(m) in (2.8) becomes 

V(m)= l[2(c  1 4 1 3 6 - z ) ] m  +~(Te)m 

which, for c = 3/4, equals 

V(m) = - l m 4  + ~ m  6 (2.12) 
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From now on we shall restrict our considerations to this case, namely in 
Z~, with intensities as in (2.4) and with c =  3/4. Our  main result is the 
following. 

2.1. T h e o r e m .  Let #~ be the product measure on { - 1 ,  1 }z~ with 
average 0. Then 

lim/~;-1/2, = [1 - c(t)]  Vo + ~ (Ym* -t- Y-m*) (2.13) 
Z 

where vm is the Bernoulli measure with average m and [ 1 -  c(t)]  denotes 
the probability that x(t) is finite, where x(t) solves 

dx=x3dt+dw, x ( 0 ) = 0  (2.14) 

w(t) being the standard Wiener motion. 

Remarks. The escape from the unstable equilibrium for a potential 
with quartic maximum is therefore a truly stochastic event. Assume we run 
a computer simulation. Then for the quadratic case the escape time is 
always the same (on the time scale log e 1) no matter  what run is actually 
observed. In the quartic case the time scale is much longer, i.e., e-1/2. On 
this cale the time of escape is stochastic; it changes from one run to the 
other. It is not, however, completely unpredictable: by this we mean that the 
time one has to wait after t to find a finite magnetization (assuming that 
at time t it was still infinitesimal) is stochastically shorter than if t = 0. 

The distribution of an unpredictable escape time is exponential. To 
have such a distribution it is not enough to have a maximum of the poten- 
tial which is very flat; one really needs to replace the unstable maximum 
with a stable minimum so that we have a three-well potential with the two 
extremal minima possibly much deeper than the central one at m = 0. In 
this case the system has to fight against a drift to reach a finite magnetiza- 
tion and the escape (on a much longer time scale) has an exponential dis- 
tribution. We refer to ref. 3 for a very clear and interesting discussion on 
these points in the context of optical physics, and to ref. 4 for a mathemati-  
call.y rigorous analysis of the tunneling effect in a particle system, the 
contact process. 

The proof of Theorem 2.1 is based on the following argument, as 
pointed out by D.A. Dawson, to whom we are indebted for this and for 
several other enlightning discussions; see also ref. 5, where a similar 
approach is used to study critical fluctuations in a mean field model of 
interacting Brownians. Consider the one-dimensional analogue of our 
problem, namely 

dm~ = [m 3 - (9/8)m 5 ] dt + ~1/2 dw, m~(0) = 0 (2.15) 
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The above equation is based on the assumption that the relevant fluctua- 
tions of the actual particle system with respect to the limiting equation 
(2.7) are essentially Brownian and have strength as in (2.15). Such an 
assumption is supported by the analysis of the magnetic fluctuation field 

~1/2 2 0 " ( X ,  g) 
x ~ Z ~  

which converges to a Gaussian field whose covariance diverges propor- 
tionally to t (hence producing the same effect as el/2 dw); see refs. 7 and 16, 
where the stability of the hydrodynamic behavior is in general related to 
the fluctuation-dissipation theorem and to the asymptotic behavior of the 
fluctuation field. Notice that such a procedure, namely to add to the hydro- 
dynamic equation a white noise with strength determined by the covariance 
of the fluctuation field, gives the correct prediction for the escape from the 
unstable equilibrium in the quadratic case. One final remark on this point: 
the assumption that the system is on a finite macroscopic volume plays 
here a fundamental role in the reduction to one degree of freedom; in fact, 
on the longer time scale we need to introduce to see the escape, the space 
structure, still present in (2.7), is completely lost. This greatly simplifies our 
proofs. 

Anyway, let us take (2.15) for granted; then, by a scaling argument it 
easily follows that 

x ( t )  = lim 0 x~(t); X~(t)  ~ C, 1/4me(g 1/2t) (2.16) 

solves (2.14). One can also prove that the time for x(t) to reach ~ has the 
same limiting distribution when e-~ 0 as the the hitting time at +m* for 
the original process ms (times being properly renormalized). 

Our study of the escape for the particle system mimics the above 
approach; we list below some of the main problems we have encountered 
and outline the strategy used to overcome them. The analogue of rn~ is the 
total magnetization 

~t = ~ ~ ~(x, t) (2.17) 
x 

As in (2.16), we renormalize it as 

X ~  = e -- 1 / 4 6 e l / 2  t (2.18) 

We think of this as a process on ~ ( R + ,  R) (the path space of the jump 
process described by the variable X~) and we want to prove that its law ~ 
converges to the law ~ of x(t), as given by (2.14). What we actually need 
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is something more, namely that the hitting times for X7 converge to those 
of x(t).  More precisely, for all R > 0  call z(R) the first time when the 
absolute value of the canonical variable in ~ ( R + ,  R) equals or exceeds R. 
Then we choose R as a suitable function of e which diverges when e--* 0, 
and we want to prove that the law induced on this r(R) by ~ behaves like 
that induced by ~ when e--* 0. Of course, one would like to choose R so 
tlhat this implies that the time for the magnetization to become finite 
converges on the time scale e-1/2 to the explosion time in (2.14). 

The main difficulty when trying to prove something like this is that X~ 
does not satisfy a closed stochastic differential equation. In fact, when L ~ 
acts on X~ (or on a function of X~), then the result is no longer a function 
of X~. One finds an expression involving product of spins at sites close to 
each other [cf. (2.3) and (2.4)]. To deal with this problem we have 
expIoited the fact that we are in a (macroscopically) finite volume (having 
e -1 sites) and that the main term in the generator is e - 2 L  0. This is in fact 
in some sense close to the generator of a diffusion, so that after times of the 
order of e -a (here a is any positive number), the process with generator 
8-2L 0 will homogenize any initial local disturbance. For this argument to be 
effective we certainly need the influence of the Glauber interaction to be 
negligible up to times of the order of e -a. In (2.8) we scale the values of 
#t by a factor e 1/4. Then if we trust (2.7) as capable of describing the evolu- 
tion of the magnetic field to such an accuracy (e~/4), we would predict that 
when 6~ reaches values of the order of e 1/12 then the magnetization varies 
significantly over times of the order e-~ (on the magnetization scale el~4). 
F'or this reason we need to choose R, the hitting value for X~, much 
smaller than el/~2-,/4. To be definite, we fix once and for all the value of 
a equal to 10 -6. Then we choose R only as large as e ~o~ [our same techni- 
ques would allow for a larger value of R as e 1/12-1/4+1~ (the value 10 in 
the previous expressions is not optimal). The proof would, however, be 
considerably longer]. 

Once we establish the convergence of the law of this hitting time we 
are only one small step closer to the end. In fact, the absolute value of the 
total magnetization rY, at this time has only reached the value e ~/4- ~o~. Let 
us go back for a moment to the example (2.15) and change the initial 
condition as me(0)= _+e', 0 < ~/< 1/4 (r/= 1 / 4 - n l O a ,  n = 1, 2,..)~ The new 
normalization is then 

x , ( t )  = ~ ' tm~(e-~t)  (2.19) 

which converges in distribution when e--, 0 to the solution of the equation 

d x = x 3 d t ,  x(O)= +1 (2.20) 
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We proceed analogously in our particle model. We set q = e  1/4 10a and 
define (counting times starting from the previous hitting time at e~/4 10a, 
for notational simplicity) 

X~ ''7 = e-'10~-2~ (2.21) 

Call N~'" the law induced by X~ '". The strategy is again to prove that N~'" 
induces on v(e-lo~) a law which in the limit is supported by a single value, 
the explosion time for x(t) solution to (2.20). At this time the magnetiza- 
tion has value d/4 2o% we set then t /= e 1/4 2o~ and start again. We repeat 
this procedure till I6~l ~> e l~176 When the magnetization reaches this value it 
is so close to a finite nonzero value that its further evolution can be studied 
almost explicitly and in this way we finally reach the value _+m*. The total 
escape time is then the sum of all the above hitting times; they are finitely 
many and only the first one contributes effectively to the sum in the limit 
as e --* 0, because of the different normalizations. 

3. THE FIRST STAGE OF THE ESCAPE 

Following the strategy outlined at the end of the previous section in 
this one, we start establishing the main ingredients for proving that the first 
time when I6,1 ~ >el~176 has the same law when e ~ 0  as the explosion time 
in (2.14). To complete the proof of this statement, we need some properties 
on the typical configurations of the process which will be established in 
Section 4. We also postpone to the Appendix C the proof of some technical 
estimates that we shall use in this section. 

First some notation. We set a = 1 0  - 6  and 

H={ f l= l /4 -n lOa:  O<~n<n*,l/4-n*lOa=lOOa} (3.1) 

For each t/e H we define X~ '" as in (2.21); N~'" and r(R) are also defined 
at the end of Section 2. To state the main result in this section, we need to 
specify the initial spin configuration corresponding to the initial value X~ '". 
Given t/e H, we shall say that the family v ~'" is allowed if it equals /~ when 
q = 1/4, while for t /<  1/4, (i) there is 7 ~'" = _1 such that IX~'"- 7~'"[ ~ e  1-rt, 

almost surely; and (ii) 

lim v~'~(llall ~>er/--Za) = 0  (3.2) 
~ 0  

where 11011 is defined in (4.1) [-roughly speaking, this norm is related to the 
maximum of the absolute value of the average magnetization over all 
possible intervals of Z~ with length of the order of e -  1+ 1/5 (the choice of 
these numbers is not optimal; we need intervals infinitesimal on the macro- 
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scopic scale e 1, yet very large microscopically)]. Therefore (3.2) ensures 
that local values of  the magnetization cannot exceed by too much the total 
average magnetization. 

Theorem 3.1. Let ~ ~ H  and let v ~'~ be an allowed state. For all 
R > 0  denote by ~ "  the law N~'~ for the process stopped at r(R). If 
~/= 1/4, then ~ "  converges to ~R,  the law of the process (2.14) stopped 
when it reaches R. If r/< 1/4, then ~ "  converges to the law supported by 
the deterministic trajectory x(t) solution to (2.20), with initial datum =7~"~, 
as e--* 0 (cf. the definition of v ~'") and stopped when its absolute value 
reaches R. 

Finally, the law of r(e-~0~) under N~'~ converges to the distribution of 
the explosion time for the process (2.14) if q = 1/4, and to the explosion 
time for (2.20) if ~/< 1/4. 

Remarks. When q =  1/4 the limiting law of X~ '~ is described by a 
nonlinear stochastic differential equation. This is an example of a way to 
approximate stochastic differential equations by discrete particle models. A 
severe drawback to our results (from this point of view) is the limitation 
to finite volumes, an assumption that we used in an essential way. The 
analogous result in an infinite volume would yield a stochastic PDE. Even 
more interesting and intriguing is the two-dimensional case, as pointed out 
to us by Jona-Lasinio, to whom we are indebted for many enlightening dis- 
cussions on this aspect of the problem. The model in the two-dimensional 
case in fact should provide a discrete approximation for stochastic quan- 
tization being somehow related to the generalized stochastic differential 
equation introduced in ref. 14 [here we think of a potential V(m) = - 2 m  4, 
2 > 0, obtained, for instance, by choosing 7 = 1/2 in (2.%)]. 

The remainder of this section is devoted to the proof of Theorem 3.1 
obtained via several intermediate steps. 

3.1. A C h a n g e  o f  Variables  

In this first step we compactify the space, introducing the variable 

y~,~ = arctg([X~,'q 3) (3.3) 

The new process lives in a different space, ~ ( R + ,  [ - n / 2 ,  n/2]). However, 
for notational simplicity its law will be denoted by the same symbol ~ ' "  
as for the process X~ "". Furthermore, the stopping times r(R) introduced 
be, fore when employed in this new space denote the stopping times at 
arctg(R3). Finally, T(~b) denotes the first time when the absolute value of 
the canonical variable in ~ ( R + ,  I-re/2,  n/2]) reaches ~b. 
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3.2. The Mar t inga le  Problem 

To study the convergence problem, we shall use the Stroock- 
Varadhan martingale theory./~9) Let F be any smooth function on 
[ - re/2, zc/2]; then 

F(Y~'")-F(Y;'") - dse 2"L~F(Y~'")=M~'" 

where M~ '" is a martingale. Since L o F = 0  (because the stirring does not 
change the total magnetization), only the Glauber generator contributes to 
the above expression. After a Taylor expansion we get 

F(Y~'") - F(Y~'~) - f~ ds F'( Y~'~) A~'"(s) 

fO g'i7 g,~ - �89 dsF"(Y~'")A2 (s)+Rt M;'" 

1 f , , ( yE ,  rI] A~'"(s) = f ' ( X ,  ~'~) y]'"(s) + : j  ,~,~ , 7~'"(s) 

A~'"(s) = f ' (X~'")  2 y~'"(s) 

(3.4) 

(3.5a) 

(3.5b) 

where F '  and F" are the first and the second derivatives of F, while f '  and 
f "  are the first and second derivative of the function f ( .  ) = arctg(. )3. Here 
R~ '~ is the remainder term in the Taylor expansion; it vanishes in sup norm 
when e--* 0. Finally, 

y]'~(s) = gl-3" ~v 6(y+j )  
�9 .j 1 

_ 3  1-[ a(y+j){4~(y)[~r(y+ 1 ) + ~ r ( y - 1 ) ] - - ~ ( y +  1) ~r(y-- l)} 
/ =  2 

(3.6) 

~,~(s )=~-~  l-~(y)~(y+ ~)+160,)~(y+2)+ ~ 1~ o(y+i) 
. i = 0  

-~a(y) ~ a(y+i)+ 3a(y) a(y+i)--~ a(y+i) (3.7) 
i = 2  i = 3  i = 0  

and r in the two equations above is evaluated at the time e-2"s. 
Notice that the second integral in (3.4) is vanishingly small when e ~ 0 

if q < 1/4; this follows from (3.7). As a consequence, the limiting process 
will be deterministic, in contrast to the case when r/= t/4. 
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As usual with martingale problems, we first need to prove tightness 
and then to identify the limiting points by proving that they satisfy a 
martingale equation which has unique solution. Tightness is the most 
serious problem in our case. A sufficient condition for tightness comes from 
a uniform L 2 estimate for both "" 7g , i =  1, 2. While this is true for 7~ '", for 
all t/~ H, this is not the case for y]'". In fact, if we square it and consider 
the contribution of the diagonal terms, we get a factor ~;-6,, which 
diverges for the higher values of q. We shall overcome this problem by 
taking suitable time averages of 7~, as we shall see later. 

3.3. The Modi f ied  Process 

~nstead of stopping the process at ~(e- ~0~), it is convenient to suitably 
redefine it after this time. It is also convenient to introduce a new stopping 
time rather than the above one. We set in fact 

z ~'~=inf{s~=n~ a+2~. IX~[~>e -1~ (3.8) 

(namely we introduce a tie grid e-a for the original process, hence e "+ 2, 
for the X ~'~ process, and we look at the first time on this grid when the X ~'" 
process reaches or exceeds the value e-=~ We then define a process Z~'" 
which is identical to Y~'" for t ~< z ~'" while its value afterward is determined 
by (2.I4) [or (2.20) according to the value of r/] with initial value x(r ~'") = 
[tg(Y~'")] 1/3 (Y being evaluated at r~'"). Then, for these values of t, 
ZT'"= arctg[x(t)]  3. Such a process is then stopped when it reaches _+~z/2. 
We call ~ ' "  its law and we want to prove that, like ~"" ,  it converges to 
N,7, the law of arctg[x(t)3], where x(t) solves (2.14) or (2.20) according to 
the value of r/. 

3.4. A S ta tement  Equivalent  to  Theorem 3.1 

Since the following discussion works for all r/, we omit writing it 
explicitly. I f  we assume that ~ P, then we can easily deduce that 
~7(s [where r denotes the explosion time for (2.14) or (2.20), 
according to cases]. In this way we shall reduce the proof of the theorem to 
only showing the above assumed convergence. 

To prove this statement, we argue as follows. Call T(n/2) the time 
when the absolute value of the canonical variable in ~ ( R §  l - n / 2 ,  n/2]) 
equals n/2 (see the notation introduced in Section 3.1). Then by the above 
assumption the law of T(n/2) under ~ '  approaches that of z, the explosion 
time for (2.14) or (2.20) according to cases. Calling T(~b) the stopping time 
at ~b of the absolute value of the canonical variable in ~ ( R + ,  l - n / 2 ,  n/2]), 
then, still by assumption, its law under ~ approaches that under ~.  
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Then, since (i) for ~b ~ ~/2, 

T(~b) <~ r(s - ' ~  ~< ~'~ ~< T(r~/2) 

and (ii) the distribution under ~ of T(~b) converges to that of T(rc/2) (of 
course the same as the law of ~), then, by using the previous considerations 
on the convergence of the distribution of T(~b) and T(rc/2) when s -~ 0, we 
deduce that the distribution of v(~ ~o~) under ~ ,  identical to that under 
~ ,  by the second inequality above, converges to the distribution of r. 

3.5. Tightness 

Since the processes defined by (2.14) and (2.20) are tight, tightness of 
Z~ '" easily follows from the tightness of Y~'"(t/x ~.")), i.e., the same as the 
process Z stopped at r E'". 

Note: In the equations below we omit the superscript tl to simplify 
notation; all expressions depend on t/ even though q does not appear 
explicitly. 

Writing (3.4) with F(x)= x, we have that 

Y~-  Y;= dsf '(X;)y~(s)+�89 ds f" (X; )7~z(s ) -R~^~+M~^~ 

where M~A~0 is a martingale, 7~ is a uniformly bounded function, and 
R e converges to 0 in uniform norm when e--* 0, uniformly on t in the 
compacts. 

Therefore, tightness for Y~(t/~ r E) is a consequence of the tightness of 
M~ A ~ and F~(t r, T~), where 

t a r  t 

F~(t) -= ~ ds f ' (X~) 7](s) (3.9) 

Since y~ is uniformly bounded, the tightness of the martingales M~ ̂  ~ easily 
follows from Lemma 2.6 of ref. 12. 

To prove the tightness of F~(t/x v~), we use the Chensov moment 
condition(2); thus, we need to show that for all T <  oo there are positive 
constants e, y > 0, and a > 1 such that for all s < t < T, 

E dsf'(X~)7](s) <~c]t-sl ~ (3.10) 
A ~c 

where E here and in the following denotes the expectation with respect to 
the process starting from v ~ (cf. Theorem 3.1). As already mentioned, if y] 
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is L 2, then the above condition is trivially satisfied. In fact, we can set 7 = 2 
in (3.10) and get a = 2  (after using the Cauchy-Schwarz inequality). 
However, if r/is close enough to 1/4, y~ is not in L 2 and we have to proceed 
more carefully. The proof we shall give does apply to all values of t/; 
however, for the above reason it can be simplified if t/ is not too close 
to 1/4. 

We are going to prove (3.10) with 7 = 2  and a = 9/8. Let sk =ks 2~ a, 
k~-0. Then if [ t -s l  ~>8 2~-a, there are n and n' such that sn,_l <s<sn, and 
s ._  1 < t ~< s,,. Therefore, using the Cauchy-Schwarz inequality, we obtain 

E [ ( r ~ ( t )  - V~(s)) 2 ] ~< (n - n' + 2) {E[(F~(t A r e) -- F"(s,, -1 A re)) 2 ] 

n--I  
+ ~ E [ ( F ~ ( s k  A r e) - - F e ( S k  1 A ,~e))2] 

k=n'+ 1 

+ E [ ( r e ( s ~ ,  A r ~ ) - r ~ ( s  ^ r~))2]} (3.11) 

First observe that by the definition of r ~ 

( re (Sk  A r ~) -Ve(Sk_ ~ A r~)) 2 

= (V~(s~ /, r ~ ) _ r ~ ( s  ~ 1 A ~.))2 l(r~>sk_1) 

Hence 

(-Fe(Sk A l : e ) - -  V e ( ( S k _  1 A r e ) )  2 

<~(F~(Sk A "C~)-- F~(Sk_ l A r~)) 2 I(Z~)S~_2) 

I? <~2 du du'E[f'(X~,)y](u)f'(X~,,)y~(u')l(r~>~Sk_2)] (3.12) 
k 1 k-I 

To proceed we need an estimate for the expectation in the last integral. 
This cannot be uniform with respect to the integration times, since we have 
already seen that y~ is not in L 2 (for r/ close enough to 1/4). The next 
lernma gives the required estimate. Its proof, given in Appendix C, is based 
on some good mixing properties of the stirring process. 

k e m m a  3.2. Let t /e H and let t > s be such that t - s  < s 2'-~. Then 
there is a constant c independent of e, t, and s such that 

fi'ds' E[f ' (X; '")  y]'"(t) f ' (X~:")  y]"(s ')  l(v ~'' > s -  ~)] ~< ~2~ C/j 2t/ ~ a 

(3.13) 
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Notice that rewriting the time integral using nonrescaled times, i.e., 
those of the original process, we get an integral over times of the order of 
s-~, the same for all values of ~/. 

3.6. Tightness (Continued) 

By (3.13) there is a constant c such that 

E[(F~(Sk A z~)-F'(s~_l  A ~))2] <~c(n_n,)e4,_2, (3.14) 
k = n ' + l  

so that the contribution of the second sum in the right-hand side of (3.11) 
is bounded by c l t - s [ 2 ;  in fact, I t - s [  > ~ ( n - n ' + 2 ) s  2" ~. On the other 
hand, the first and the third terms on the right-hand side of (3.11) are 
estimated using Lemma3.1,  yielding a bound c ( n - n ' + 2 ) e 4 ~ - 2 o ~  
c l t - s l  2. 

In conclusion, we have so far proven the estimate necessary for 
applying the Chensov criterion wi thy  = a = 2, but only for I t -  sl >/e 2n-~. 
Let us now consider the case I t - s l  <e  2"-~. There are two possibilities: 
(a) both s and t are in the same interval Is ._  ~, s~] or (b) they belong to 
two next intervals, say (s~_2, s ._  1] and (s~_ 1, s.].  We can reduce case (b) 
to (a) because 

E[(r~(t/, ~ ) _  r~(s ^ ~))~] 

~< 2{~'[(r~(t A ~)  - r~(s._~ A ~))~] 

+ E[(r~(s ._~ ^ ~)  _ r~(s ^ ~))~] } 

so we consider case (a). We set 0 = 8~/ -a  and use Lemma 3.2 as well as 
the bound lye(s)y](s'){ ~< cs -6~ [easily derived from (3.6)] to get 

E [ ( F ~ ( t  /x r ~) - F ' ( s  /x r~)) 23 

= E [ ( F ~ ( t  A r ~ ) - F ' ( s / x  r~)) 2] l (e~ I t - s l  ~ ~2.-a) 

+ E [ ( F ~ ( t  A r ~ ) -  F~(s A ~))z] l ( i t _ s  I ~<e0) 

<~ c[ sZ" -a] t - - s ]  l (e~ I t--s]  <~ e2n-a) + g-6qlt-- sI2 l ( l t - s l  ~<e~ 

< c[[ t  -- sl l + ~2n--a)O- I + It __ s[ Z--6nO -1] 

<< c l t - -  sl~lOn-- 2a) ~ ~ << c I t - -  sl9/8 

which completes the proof of the tightness. 
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3.7. The Limiting Process 

By tightness the law . ~ "  of the process Z ~'' converges by sub- 
sequences. We shall use this fact to show that any limiting point satisfies 
a martingale relation. We shall then prove that this martingale relation 
uniquely defines a process which is the law of the solution to (2.14) or 
(2.20) according to the value of r/; to draw this conclusion, we need to 
know that any limiting point has support on C(R+,  [-re/2,  rt/2]), but this 
follows from the fact that the jumps of X ''" are +e ~ " 

We shall use the martingale characterization of the diffusion processes 
on compact sets (ref. 13, Chapter IV, pp. 208-214) to reduce the whole 
problem to the proof of the following statement. For all functions 
F; ~ , . . . ,  gt k in C ~ and with compact support, and for all 0 ~< t~ < .-- < 
t k < s < t ,  

T ( n / 2 )  k 

E[F(Z; '")  f ,A  ~PJ(Zo ) lim - F ( Z ~ ' " ) ] - o ~ ^  r(~/:) ds' (LF)(Z~:") l-I ~,~ = 0  
e ~ O  j = l  

(3.15) 

where T(~/2) is the hitting time at n/2 and L is the following operator: 

dF d2F 
(LF) (y )  = ~yy ( y ) [ f ' ( t g  y) tg y + �89 y)]  + dy- ~ ( y ) [ f ' ( t g  y)32 

if ]y[ < 7r/2 and 0 otherwise; recall that f '  and f "  are, respectively, the first 
and the second derivatives of the function arctg(.). 

Since by its definition Z~ (note: we keep omitting the dependence on 
to, simplify notation) is given by the solution to (2.14) or (2.20) according 
to the value of r/ (see Section 3.3); then by Theorem 7.2 and the related 
construction on p. 214 of ref. 13, it is enough to prove that 

lim E[F(Z~ ^ ~) - F(Z2 ^ ~)] 
~: ---~ 0 

- E ds' (LF)(Z~,) I-[ gtj(Z,j = 0 (3.16) 
A ~C ~ j = 1 

We set [cf. (3.4)] 

N; = F(Z~ A ~) -- F(Z~ ^ <.) 

' s  A ' c ~  
1 tt ~ ~ t - d s ' [ F ' ( Y ~ , ) A ] ( s ' ) + ~ r  ( Y s , ) A 2 ( s ) ] + R t ^ ~ - R ~ ^  3, 

(3.17) 
Then, by (3.4), N~ is a martingale. 

822/55/3-4-5 
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and 

Thus, (3.16) will easily follow from (3.17) once we show that 

t 

f Fl(X~,)[y](s')- l(r  ~ > s') l~ • = lim 0 
e--*O s j = l  

(3.18) 

e ~ O J s  j = l  
(3.19) 

where v" equals 1 if t /= 1/4 and 0 otherwise. In (3.18) and (3.19) we have 
used the short-hand notation 

k k 

lq %-I-I %(z;) 
j = l  j = l  

and 

F~(x) = ~?x~ 5 F(arctg X 3) 

for i =  1, 2 . .  
We start by proving (3.18). As in the proof of tightness, we split the 

time integral between s and t into a sum of integrals over intervals 
(sk, sk + t ] of length e2,-, .  We apply twice the Cauchy-Schwarz inequality 
and we get 

j = l  

j = l  

+E F~(X~.,)[73(s')-(Xq 3] l (z~>s. ,  ~) 7~j 
j = l  

+ ~ 2  E "~+~ ds'F~(X2,)f~,~i(s')-(X2,) 3] l ( ~ > s k _ ~  
k = n '  k "~ 

(3.20) 

where we have used the same notation as in (3.11). 
We estimate the first two terms on the right-hand side of (3.20) by 

- - c ( n  - -  n '  + 2),~2(2r/- a) _~_ g(2r / -  a)9/8 
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We have used Cauchy-Schwarz to expand the square, noticing that 
]FI(Xes,)(X~,)3I is uniformly bounded and that those terms which contain 7] 
reconstruct the function F ~, so that we can apply (3.10) with 7 = 2  and 
o-= 9/8. For  the third term in (3.20) we use the following lemma, proven 
in Appendix C together with Lemma 3.2. 

kemma 3.3. Let F~  C ~ and have compact  support, and let F 1 be 
as above. Let t and s be as in Lemma 3.2. Then there is f l > 0  and a 
constant c so that 

E ds ' f l (X~,)[7](s ' ) -(X~,)  3 ] F, (X~)[7]( t ) - (X~)  3 ] l(r~ > s -  e 2~-~) 

C~/3 eZr/ a (3.21) 

3.8. The Limit ing Process (Cont inued)  

Since I t - s]  is bounded by assumption, the same argument we have 
used to prove tightness shows that the third term on the right-hand side of 
(3.20) is bounded by J .  

We are left with the proof  of (3.19), which is obvious if r /< 1/4. If 
r /= 1/4, we use the fact that F 2 and the 7J's are bounded, so that by the 
Cauchy-Schwarz inequality after making explicit the difference ~ - 1 ,  we 
are reduced to considering a term of the form 

[( x ix E 

where the expectation is with respect to the process starting from an 
allowed measure v ~'" with t I = 1/4 and t = ~-a; here the time is not renor- 
malized; it refers to the process with generator L ~. Finally, h(x, t) stands for 
the x-shifted function h on { -  1, 1 }z~ evaluated at time t. The function h 
in turn is a finite sum of products of cr(x)'s such that in each of these terms 
there is at least one a. In Appendix C we prove that (3.22) vanishes when 
e ~ 0 [the proof  being similar to those of Lemmas 3.2 and 3.3], so that 
Theorem 3.1 is proven. 

4. TYPICAL C O N F I G U R A T I O N S  A N D  TRAJECTORIES 

In this section we complete the proof  of Theorem 2.1, modulo a few 
estimates of more technical nature which will be proven in Appendix B. 

There are essentially two problems for proving Theorem 2.1 after 
Theorem 3.t has been established. In fact, from Theorem 3.1 we get an 
explicit estimate on the time it takes for the total magnetization if, to 
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increase from the value e" to e" ~0~, t/~ H (see the beginning of Section 3 
for notation). However, this result is based on the assumption that the 
distribution of the spins at the time when ~t reaches e" is allowed, in the 
sense specified at the beginning of Section 3. To prove this, we shall study 
and characterize the typical trajectories of the process for time intervals 
of the order ~ ~, i.e., these are infinitely long times when e ~ 0 ,  yet 
infinitesimal on the time scale when the escape is observed. 

The second problem concerns the final step of the escape, which was 
not at all considered in Theorem 3.1, namely when the magnetization 
increases past e ~~176 to reach one of the two equilibrium values _m*.  The 
answer to this question is again based on a good characterization of the 
typical trajectories of the process which allows us to establish in a very 
strong form the propagation-of-chaos property and to prove that the 
magnetization, after reaching the value e 100a, follows closely the deter- 
ministic equation (2.7). 

The key ingredient in our analysis is the estimate (4.6) below, whose 
proof is given in Appendix A. The estimate is valid for any initial con- 
figuration and it does not refer specifically to the problem of the escape 
from the unstable equilibrium. Given a configuration a E { - 1 ,  1} z~, we 
define m~.,- {m~(x, t; a), t>>.O, xsZ~}  as follows: 

m~(x , t ;a )=~P, ( x  z) a(z)+ d s ~ P ~ _ , ( x ~ z )  g(z,m,.,) (4.1) 
z z 

where P~ is the transition probability of a simple symmetric random walk 
which jumps on its nearest neighbors (in Z~) with intensity e 2; g is given 
by [we write below m~(x, t) instead of m~(x, t; a) for notational simplicity] 

g(x, m~.,)= [m~(x + 1, t) + m~(x-  1, t) - 2rn~(x, t)] 

I 4 

--�89 [I m ~ ( x + j , t ) + ~ l ~  m~(x+j, t)  
./~ --1 j = 2  

4 

1-I m,(x + j, t){m~(x, t)[m~(x + 1, t ) - m ~ ( x -  1, t)] 
. j ~  2 

--�89 + 1, t) m,:(x-- 1, t)} (4.2) 

Therefore, m,:,, is the solution to a discretized version of (2.7). Indeed, one 
expects that the typical trajectories of our process are somehow related to 
rn~,,. Of course, it does not make sense to compare rn~,, and at (the random 
spin configuration at time t) site by site [since a t (x )=  +1];  one should 
rather compare suitable space averages of the two quantities. This is done 
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in some convenient way for our purposes by introducing the following 
quantity. For any real-valued function f on { -  1, 1 }z~ we set 

Jlflr = sup ~ Pee2/5(X -'+ Z) f ( z )  (4.3) 
x z 

(the choice of the time e 2/5 is not optimal). Roughly speaking, for any fixed 
x the above is an average of f over an interval centered at x and having 
length of the order of ~_[~--2~2/5]1 /2 ,  a n  interval which becomes infinite 
when e-+ 0 but which is still infinitesimal if measured on a macroscopic 
scale, ~e  -1. Using (4.3), we can then compare the configurations of 
the process at time t and rn~., by estimating the probability that 
{ [Xa,- m~,t IP/> ~},  where ~ > 0 has to be suitably fixed. An upper bound for 
such a probability can be derived using the Chebyshev inequality with 
power n = 2k, k/-> 1. Denoting by E~ the expectation of the Stirring + 
Glauber process starting from a and by Po its law, we have that 

Po.([l~,-rn~,,l[ ~>e ~) 

~<e-lsupP~(x ~P:2/5(x-+z)[a(z , t ) -m~(z , t ;a )]  > e  ~) 

~-1 sup e-~n ~ P~2/,(x zi) [a(zi, t ) -  m~(zi, t; a)] 
x Z l  - �9 �9 Z n  i = 1 

(4.4) 

It is then natural to give the following definition. For all n ~> 1, all n-tuplets 
x = (xl ..... xn) of n distinct sites in Z~,, all configurations a, and all e > 0 and 
t >/0 we set 

) v~(x, t; a) = E~ [a(xi, t) - me,(xi, t ;  0")] (4.5) 

We: shall say that n is the degree of v,~ and such functions will be referred 
to as v-functions. Analogous definitions have been given for the simple 
symmetric exclusion process, ~ )  the weakly asymmetric simple exclusion 
process, (~~ and the Boghosian-Levermore cellular automaton. ~5) We 
have in all these cases (including ours) a bound on the v-functions which 
decreases exponentially on the degree n of the v-function, just what is 
needed to compensate the diverging factor e-~n in (4.4), if ( is not too large. 
In Appendix A we prove such a bound [cf. (A.1)], which we report here 
in the following particular form. For all n, x, a, and  t ~< 2~" there is a 
constant c (depending on n and a) such that 

Iv~,(x, t; a)[ ~< c(~-2t) -"/8 (4.6) 
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[actual ly  we can prove  that  the same inequality, with a possibly different 
constant  c, holds for t varying on any compact ;  since we do not  need this 
s t ronger  p roper ty  we have simply stated (4.6), which is easier to p rove ] .  
F r o m  (4.6), (4.4), and wel l -known propert ies  of independent  r a n d o m  
walks, it easily follows that  for all posit ive k there exists Ck SO that  

P~(] la , -  rn~.tll >f e ~) ~ Ck ek (4.7) 

= 1/4 -- a (4.8) 

uniformly on e ~ ~< t ~< 2e". 
Equat ions  (4.6) and (4.7) are int imately related; we have seen how 

to derive (4.7) f rom (4.6). Next  we shall use (4.7) to extend (4.6) in the 
following sense. 

Theorem 4.1. 
x = (x~,..., x , ) ,  e > 0, and 2e ~ ~< t <~ 2e - a  

Fo r  all a e  { - 1 ,  1} z~ such that  I]o-L] ~<e 98~, for all n, 

]v~(x, t; cr)t ~< ce n~ (4.9) 

6 -= 1/4 - 3a (4.10) 

Remarks .  With some more  effort we could prove  (4.9) with 6 = 1/4, 
but  (4.10) is sufficient for our  needs. The  n u m b e r  98 of course is not  
opt imal;  it arises f rom the fact that  liatl] might  be e -2a larger than  ]tY,[ and 
we shall use Theo rem 4.1 only for Iff,] <~e 1~176 

The p roof  of Theo rem 4.1 is an easy consequence of (4.6) and of the 
following lemma,  as we shall see right after stating it. 

L e m m a  4 .2 .  Let  I]rr]] ~< e 98a. Then  there is a constant  c such that  the 
following hold. (i) F o r  all x ~ Z~ 

Imp(x, t;a)L <~ clLrrlL, ez/5<~t<~2e ~ (4.11a) 

] m ~ ( x , t ; a ) - f f l ~ c ( i l r r l [ 3 e - ~ + ~  2/5) e-a<~t<.G2~ - "  (4.11b) 

(ii) Fo r  all posit ive k and b such that  0 < b <~ a there is c so that  for all 
X~ Z~ 

I m , ( x + l , t ; a ) - m ~ ( x , t ; t r ) l < ~ c e  k, e-b<<.t<~2e -"  (4.12) 

(iii) Finally, let r be any n u m b e r  between 1 and 2 and rr ("), n />0,  any 
sequence of configurat ions such that  a (~  a and 

Ilm,(-, rea; or("))-  a ( ' +  1)11 ~<e ~-a  (4.13) 
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[c~ = 1 / 4 -  a; cf. (4.7)]. Then 

sup sup Imp(x, ~ar; a ~"- 1))_ m~(x, n~ar; a)J <~ c~ ~-3~ (4.14) 
n~ar <~ 2 e - a  x 

Remarks. Roughly speaking, the above lemma states that if the 
magnetization is small, then it stays small for a time e -a, here the dynamics 
is that defined by (4.1). Furthermore, during the evolution the magnetiza- 
tion becomes very flat. This effect is due to the finite-volume assumption 
and greatly simplifies all our considerations. Finally, if at all times near the 
magnetization is slightly changed (to mimic what happens in the particle 
system), then the overall effect is negligible; Lemma 4.2 just states quan- 
titatively these considerations, which sound pretty obvious. In fact, they are 
quite elementary properties of the deterministic evolution (4.1) and we 
prefer to postpone their proofs to Appendix B. 

Proof of Theorem 4.2. Let a, n, x, and t be as in Theorem 4.1. Let 
r e [ l ,  2] be such that t=Near, N being some positive integer. On the 
right-hand side of (4.5) we condition on what has happened till time 
( N -  1)ear and we get 

v~(x, t ;a)=E~[E(~U-')( i f l  1 [a(x,,e~r)-m~(x, t; a ) ] ) ]  (4.15) 

w h e r e  o " (N-  1) is the configuration at time ( N -  1)ear. 
In each square bracket we add and subtract the term m~(x, rea; (7 (N-  1)) 

and expand the product. The generic term that we obtain in this way looks 
like 

V~m( x'' rea; o'(N--1)) l~ Imp(x, rea; ~7(N-1))--m~(x,  Near; o')] (4.16) 
x ~ I  

where x' is a subset of x with m sites (0 ~< m ~< n) and I is its complement 
in x, the second factor being a constant with respect to the internal expec- 
tation in (4.15). The v-function is estimated by (4.6). By (4.14), the dif- 
ference of the m's is bounded by E ~-3a if the sequence ~r(i)= ar,oi, i = 0  ..... 
N -  1, satisfies the assumptions of Lemma 4.2 [cf. (4.13)]. This occurs with 
probability larger than 1 -  ce k, for any given k, as easily follows by using 
(4.7). Since we are integrating uniformly bounded functions, it is enough to 
choose the above k so that k >  n/4 to prove (4.9) with 6 = c~-3a, i.e., as 
given by (4.10). In this way Theorem 4.1 is proven. 

In Appendix C we use Theorem 4.1 to prove Lemmas 3.2 and 3.3 and 
that the expression in (3.22) vanishes as e--* 0. This will not be difficult; we 
need some extra notation and considerations introduced in Appendix A. So 
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we are forced to postpone their proofs after Appendix A, and since 
Theorem 4.1 requires Lemma 4.2 proven in Appendix B, we shift the above 
proofs to Appendix C. 

Before stating the next result, we need to introduce the following 
stopping times. For t/: t /+  10a e H, let 

t~'"=inf{t: I~tL~>~}/x~-2 (4.17) 

P r o p o s i t i o n  4.3. For any r / : t / + 1 0 a ~ H  and for any positive k 
there is c so that 

P ~ [ s u p  I[a, ll > e  ~ 2a] ~cek (4.18) 

where/~ is as in Theorem 2.1. 

C o r o l l a r y  t o  P r o p o s i t i o n  4.3. The distribution of el/Zt e'l~176 under 
P,~ converges to the law of the explosion time in (2.14). 

We obviously have 

n * - - I  

t~'lO~ ~ [t~'""+l--t e '"] (4.19) 
1 

where q, = 1/4-nlOa, while n* is defined in (3.1). Given any ff > 0  and n 
as in the above sum, denote q, by r /and t/,+~ by q', then 

/ ' .0 [ ~  t',") - 11 > 

<~p~,[lla,~,,ll>e"-z"]+p~[l~2n(t~'n'-t~'")-ll>~] (4.20) 

where v ~ is an allowed state (cf. the beginning of Section 3). The second 
term on the right-hand side of (4.20) can be made, by Theorem 3.1, as 
small as desired by choosing e small enough; in fact, 1/2 is the explosion 
time for (2.20). The first term, by Proposition 4.3, is smaller than ce k, for 
any given k on the set t ~' mOa< e - 2 .  We shall see later that the complement 
of this set has vanishingly small probability. Therefore the probability that 
the sum on the right of (4.19) is larger than 

n*-- 1 

n = l  

vanishes when ~ ~ 0. Then, because of the time normalization factor e ~/2, 
this shows that the only contribution to t ~'~~176 comes from the first term on 
the right of (4.19). Since #~(llell > e a/4 2a) also vanishes when e ~ 0, we can 
apply again Theorem 3.1 to conclude that the distribution of t e'1/4 10a 
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converges to that of the explosion time for (2.14). Finally, by (4.19), 
if t~'~~176 2, then for any R > 0  we can find t/n such that t~'""<1; -2 
while t ~'""+ ~ - t ~'"" > e-2""R, or t ~'1/4- lOa ~ I;-2. Again by Theorem 3.1 the 
probability of all these events vanishes when ee--0. 

Proof of  Proposition 4.3. Let us fix r /as  in Proposition 4.3 and set 

Ak={3teEk1;-", ( k + l ) 1 ; - o ] :  Iio-,11>1;" ~} 

and for h/> k 

Bh,, = P A  { r'" > he ~ c~ Ak) 

It is enough to show that 

l m[ 
~ 0 he ~ - 2  

Since obviously 

Bh,~ + P,,(t~'"=O) = 0  
k = O  

lim P ~ ( t  ~'~ = O) = 0 
~ 0  

and since Bh, k ~< Bk, k, we shall prove Proposition 4.3 once we show that for 
any positive m there is c such that 

Bk ,  k ~ C1; m 

We denote by a (~- ~) the random configuration at time ( k - 1 ) 1 ; - " ,  then 

B,,k<<.Eu~[I(K'~> ( k -  1)e ~) P~h-,(AI)  ] 

~<B~ 1 ,k - l+  sup P,(AI)  

Since for all m there is c such that 

Pa(A 1) ~< c1; m (4.21) 

uniformly on [[aJl ~<E "-2~, as we shall prove below, then, by iteration we 
reduce the proof to that of estimating Bo, o. It is easy to see that the analysis 
in Appendix A applies as well to a process starting from a product measure 
#~ rather than from a single configuration a. The function mr is the defined 
by the initial condition #~(a(x)), x eZ~, and v~(x, t ; /~),  defined accor- 
dingly, satisfies (4.6) and (4.9). The same argument as for B,,k, k > 0 ,  
applies then to Bo, o; we omit details on this point. 

To prove (4.21), we introduce a time grid which partitions the time 
interval [1; -a, 21; a] into consecutive subintervals of length 1; t, ~ > 0 will be 
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chosen later. The probability that two spins flip in the same subinterval 
goes like ~52~5 2 (this last factor counts the number of pairs of spins), 
since the flip intensity for a single spin is uniformly bounded. Since there 
are 5 -~-a  subintervals, the probability that in any of these there are two 
spin flis is bounded by ~5 ~ 2 a. We can choose 7 so large that this 
probability vanishes as fast as any given power of e. The probability 
that there is n such that, at t=~-~+n5 ~ (and less than 25-a), Hath >2e" 
vanishes by (4.9) and (4.11b) as fast as any given power of 5. Since there 
is only one spin flip per subinterval if II~/tl <25 ~ at all t = e - ~ + n C ,  then 
116ttl ~ 5  q-2a at all t in [5-",  25 ~]. 

Proof of  Theorem 2. I (Continued). The last ingredient that we are 
still missing is the analogue of Lemma 4.2 for the evolution of the 
magnetization past 5 ~~176 This is done in the following proposition, also 
proven in Appendix B. 

Proposition 4.4. Let [[all ~<~98~ and [~T51~176 ~<e. For  any T > 0  
let sup' (respectively sup") denote the supremum over all o- as above, 
all r e  [1, 2], all n such that ns~r<.~5 300a+ T s - m  (respectively, 5 3oo~< 
near ~ 5-3~176 + T5 m), all x e Z~, and all sequences cr ("), n ~< N, satisfying 
(4.13). Then 

sup'Imp(x, 5~r; ~("- t)) _ m~(x, ns~r; ~r)[ = 0 (4.22) 

and 
lim sup" [m~(x, t; a) -T- m*[ = 0 (4.23) 
8 ~ 0  

Corollary to Proposition 4.4. Same assumptions and notation 
as in Proposition 4.4. Then for any n, upon setting T~=5-3~176 T5 -m ,  
we get 

lira sup sup [v,~,(x, t; a)] = 0 (4.24) 
~ ~ 0 x ~ - 800a ~ t ~ T ~ 

uniformly on a (provided it satisfies the conditions in Proposition 4.4) [the 
first sup in (4.24) is over all n-tuplets x of distinct sites of Z~]. 

The proof of the Corollary follows from Proposition 4.4 in quite the 
same way as the proof of Theorem 4.1 follows from Lemma 4.2. We there- 
fore omit the details. 

Notice that from (4.24) and (4.23) 

lim sup sup Eo a(x~, t - (-I-m*)" = 0 (4.25) 
~ 0  x e - S O O a ~ t ~ T e  i 

uniformly on ~ (provided it satisfies the conditions of Proposition 4.4). 
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'We now conclude the proof of Theorem 2.1. Let t >0 ;  then, by the 
strong Markov property, setting ~/= 100a, x = (xl ..... x~) 

E~ ~(x~, ~ 1/2t 

= f  dP"'E~,~,,7 ( T ( X i ,  t?, a/2t--t~,")l(t~,"<e-l/2t--e -3~176 
i 

+ E.~ [ [~ a(Xi,~-l/2t){l(te'n>~-l/2t) 
i = l  

1/2t__g-3ooa ~te, e~g 1/2/)}] (4.26) + l ( e  

By Proposition 4.3 with r/= 100a, a,~,, satisfies the assumptions of Proposi- 
tion 4.4 with a probability which goes to 1 as e ~ 0. Therefore, the first 
term on the right-hand side of (4.26) behaves like 

(m*)"f  dP~Esign(6,,,,)"] l(t~'"<~e i /2 t -s  3oo~) 

= [l(m*)n + � 89  Pl,~(t~'~<~e 1/2-- 8--30Oa) 

because of the symmetry of the process under global spin reversal. Finally, 
by the Corollary to Proposition 4.3, the latter probability converges to e(t) 
[cf. (2.13)], so that this reconstructs the second term on the right-hand 
side of (2.13). By this same argument, i.e., by using the Corollary to 
Proposition 4.3, we have that 

lim P~,(e-l/2t - - / ~ - 3 0 0 a  ~ t~,, ~< ~--1/2t) = 0 
t :~0 

so that we are left with the integral over {t ~'" > e 1/2t}. We can replace this 
condition by {t ~'~ >e-1/2t-~ -a} for the same reasons as above. Hence we 
have 

E,,~ a(xi, e-'/2t) l(t~'~>e 1/2t--~-a) 

=E,~ l(t~'">e-1/2t--e-")E~, a(x i, e - a  (4.27) 
i 

where a' above is short hand for the configuration at time e-1/2t-e -a. By 
using Theorem 4.1 and (4.11) (the conditions for applying Lemma 4.2 are 
ensured by using Proposition 4.3), the expectation on a' vanishes if n >~ 1 
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as e--,0; hence we reconstruct the first term on the right-hand side of 
(2.13) (using again the Corollary to Proposition 4.3 for estimating the 
probability that t ~'~ > e-  1/2 _ e-~). 

A P P E N D I X  A 

In this Appendix we prove that for all n/> 1, all n-tuplets x = ( x  1 , . . . ,  Xn) 
of distinct sites in Z~, all fl > 0, and a ~ { - 1, 1 } z~. 

[v~(x, t; a)[ ~Cn(~3-2t) n/8, 0<t~<g/~ (A.1) 

where v~,(x, t; a) is defined in (4.5), cn is independent of e, a, and t, when 
t is in (0, e~]. The same inequality holds for the symmetric simple exclusion 
process (m and the weakly asymmetric simple exclusion process(9); cf. also 
ref. 15, where a cellular automaton variant of this last process (of interest 
for computer simulations) is considered. The proof of (A.1) is similar to the 
one for the weakly asymmetric simple exclusion process. 

To simplify notation, we shall write v~(x, t) for v~,(x, t; a). We start 
computing the time derivative of v ~, which, after some simple algebra, may 
be proven to have the following expression: 

d 
dt v~(x' t) = e-2Lv~(x, t) + ~ ( x ,  t) (A.2) 

where L is the generator of the symmetric simple exclusion process acting 
on the function x ~ v~(x, t), thought of as a function on {0, 1 }z~ and sup- 
ported by configurations with n particles, their positions being denoted by 
x (recall that L is defined as Lo, { - 1 ,  1} z~ being replaced by {0, 1} z~, by 
changing all the - l's into O's). For this reason in the sequel we shall often 
speak of the degree of a v-function as a number of particles, their positions 
being specified by the argument of the v-function. 

The term ~ has the following structure: 

$~(w, t ) = e  -2 ~ l(xy= x / +  1){a~(xi, xj, t)[v~(x i, t ) -v~(x  j, t)] 
i # j  

+ b~(x,, xj, t)v"(x i'j, t)} 

+ ~ Z c~(i,&r,t,x)v~(xr t) 
i = i  A , F ~ Z e  

(A.3) 

where x '=  x/x,, x "J=x / [ {x , }  w {xy}], and x ~ = x w  {x,: iEr}/{x~: i~A}. 
The sum over A and F in (A.3) is restricted to A c x  and F: F c ~ x = ~ ;  
other restrictions will be specified later. In the sequel we shall refer to the 
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above, respectively, as "a-terms," "b-terms," and "c-terms." The functions 
a~, b,, and c, have the following bounds: 

la,(xi, xj, t)[ <~aJrn~(xi, t)-m~(x/,  t)l (A.4) 

tb~(x i, xj, t)[ <~ b [rn~(xi, t ) -  m~(xj, 0[ 2 (a.5) 

c~(i, A, F, t, x) ~< c (A.6) 

where a, b, and c are universal constants. Finally, c,(i, A, F, x, t) = 0 unless 
both A and F are contained in the interval of Z,  with endpoints x i -  1 and 
x ;+4 .  Furthermore, c~(i, A, F, x, t ) = 0  ifA = {xi}, F = ~ ,  and Ixi-x/] > 4  
for all j. In particular, therefore, if Ix~- xjl > 4 for all i :~j, then the degrees 
of the v-function appearing in (A.3) are not smaller than n. On the other 
hand, if there is a v-function in (A.3) with degree n - ( k +  1), k~> 1, then 
there is xi and k distinct sites (particles) in x, all different from x~ and at 
distance ~< 4 from xi. The smallest degree is therefore n -  6 and this occurs 
when in x there are six consecutive sites. This is all that we need to know 
about the coefficients a~, b,, and c~. As already mentioned, we interpret the 
degree of the v-function as number of particles; in this language the various 
terms in ~,~ represent a birth-death process, so that the a- and b-terms 
describe deaths (of 1 and 2 particles, respectively), while the c-terms have, 
according to cases, either births or deaths or simultaneously births and 
deaths. 

The following inequality will be used to estimate the a and b coef- 
ficients: 

]m~(x, t ) - m , ( x +  1, t)l <~c(T)(e-2t) -1/2, 0<t~< T (A.7) 

valid for all T >  0 and uniformly on e and the initial configuration a. 
To prove (A.7), we go back to the definition of m~ [cf. (4.1)] and we 

get 

[ m , ( x , t ) - m ~ ( x + l , t ) l < ~ l P , ( x  y ) -P~(x+l - -*  y)[ 
Y 

+ cls c F, IP~(x--, y) - e~(x + 1, t)f 
Y 

<~c(~ 2t)-l/2 + c e x / 7  

<~ c (T ) ( e -~ t ) -  1/~ 
because 

(A.8) 

1 
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where c above and in the sequel is a constant whose value changes from 
line to line. Hence (A.7) is proven. 

From (A.2) we get 

v~(x, t) = ds ~ P~_,(• ~ y) 0~(Y, s) (1.9) 
y 

where P~(x ~ y) denotes the probability that n stirring (simple exclusion) 
particles initially at x reach y at time t, i.e., such a probability is determined 
by the semigroup exp(e-ZLt). Notice that ~, consists of a sum of terms 
each having a v-function as a factor; therefore, we can rewrite it using again 
(A.9). By iterating such a procedure, we obtain a final expression for the 
v-function where we have a stirring motion followed by some birth-death 
process followed again by stirring and so forth. The problem is then to 
estimate the transition probabilities of the stirring process. To do this it is, 
however, more convenient to start the iteration in a slightly different way. 
First we relate the stirring motion to the independent one via couplings, 
then we express the expectation in (A.9) using these couplings, and this is 
the expression to iterate rather than (1.9) itself. 

The coupled process. This is a jump Markov process which describes 
the evolution of n interacting and n independent particles; here n is an 
arbitrarily fixed positive integer. We label the particles using the same 
labeling for the interacting and independent particles, for instance, 
i taking values in { 1,..., n}. A priority list rc is a permutation of the 
labels, ~=(~l, . . . ;~n).  Given ~, we introduce the generator ~ and 
correspondingly a Markov jump process on Z~ x Z2 as 

( ~ f ) ( x ,  x~ --- ~ Z {l(x.j=/=x~i-I-di, VJ) 
i = l  di=++_l 

x [ f (x  + die~,, x ~ + die.,) - f ( x ,  x~ 

+ l (~ j>  i: x=j=x.,+d~) 

x [ f ( x  + die. i-  die.j, x ~ + die~,) - f ( x ,  x~ 

+ l ( ~ j < i :  x.j=x,~+d~)[f(x, x ~  x~ 

(A.IO) 

where e i=  (6j, i, j=  1,..., n). [The interpretation of the above expression is 
the following. When an independent particle jumps, the corresponding 
interacting particle tries to do the same. If the jump would lead the interac- 
ting particle to an empty site or to a site occupied by an interacting particle 
with lower priority, then the jump is actually performed (in the latter case 
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the low-priority particle makes the opposite jump, so that the exclusion 
condition is satisfied and only an exchange takes place). The jump, on the 
contrary, is suppressed if it would lead the interacting particle to a site 
occupied by a particle with higher priority]. 

It is easy (trivial) to see that the marginal of the above process on the 
interacting (respectively independent) particles is the stirring (independent) 
process. 

We can then rewrite (A.9) as 

fs ds E ( ~ ( x ( t  - s), s)) (A.11 ) v~(x~ t) 

where E denotes the expectation with respect to the coupled process, with 
being the identity permutation of { 1,..., n}, and x ( 0 ) =  x~  x. We shall 

iterate (A.11) rather than (A.9); at the successive stages of the iteration the 
meaning of the expectation in (A.11) will, however, change. 

We describe in detail the first step of the iteration; the successive ones 
will be defined analogously. We think of the time s in (A.11) as fixed and 
we denote by y, yO the values of x(t - s), x~ - s), namely the configuration 
of the n stirring and n independent particles at time t -  s for the process 
considered in (A.11). We make explicit ~,~ in (A.l l )  using (A.3) and we get 
v-functions with different degrees. We rewrite them using (A.11 ), where the 
new expectation E refers to a coupled process starting at time t - s  with a 
particle number, a priority list, and the initial position of the particles 
determined by y, yO, i.e., (1) the positions of the particles at the end of the 
previous time interval, (2) by the particular term of ~ under considera- 
tion, as we are going to discuss below. 

The terms arising from (A.3) are labeled by 21; the subscript 1 
indicates that this is the first step of the iteration. 2l takes finitely many 
values; their number is determined by the particles number, in this case n. 
Each value of 21 specifies a term in (A.3); if this is a b-term, then 21 
specifies a pair of particles j, i. To take into account the numerical factors 
present in (A.3), we introduce a function d~(21, y, t). For the above value 
of 21, this function equals e-Zb~(yi, yj, t) l ( y j = y i + l )  [cf. (A.3)]. The 
two particles with labels i and j disappear at time t - s  and the initial 
configuration for the new process starting at time t - s  is z, z ~ which is 
obtained from y, yO by dropping the stirring and independent particles with 
labels i and j. The new priority list also in this case is defined in some fixed 
but arbitrary fashion. 

If the term selected is a c-term, then 2, specifies an index i and two sets 
A', F '  both contained in the interval with endpoints { - 1 } and {4}. In this 
case the function d~(21, y, t) = c~(i, A' + yi, F' + Yi, t, y) (i, A', and F '  being 
specified by 21), and 0 if A'+y i  and F ' + y i  are not among the allowed 
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values, according to (A.3). For a c-term the following two possibilities may 
arise: 

1. IF] ~> ]zll. We then choose in some fixed, arbitrary fashion ]A] sites 
in F and label the particles which are born there using the labels of the 
particles which were in A. The remaining particles in F are newly born par- 
ticles, which are labeled with new labels never used before. Same labels are 
used for the corresponding independent particles, which are then placed on 
the same sites as the stirring ones with same label. Hence, summarizing, 
when IF[ >~ [AL, the stirring particles in A are displaced, each moving at 
most by four sites, while the corresponding independent particles are not 
moved. Furthermore, there are I F [ -  [A] new particles on I F [ -  [AI sites of 
F. They are distinguished by new labels, and at the same places and with 
the same labels are created independent particles. 

2. IA] > IFI. We choose in some fixed, arbitrary way [F[ sites in [A[ 
and use the labels of the particles on these sites to name the particles in F 
(later we shall see that it is convenient to name the particles in some 
specific fashion). The particles in the remaining sites of A die and disappear 
at time t - s  together with the corresponding independent particles. Thus, 
in this case only IAI -  I/~l particles in A die; the others are displaced, 
moving to F; each one therefore moves at most by four sites. 

The initial configuration z, z ~ for the new process starting at time t -  s 
is then obtained from y, y0 following the two rules above. The priority list 
in any such case is again fixed in some arbitrary fashion. 

We have left to the end the analysis of the a-terms, since they require 
some special care. In fact, in the a-terms there are discrete gradients of 
v-functions [cf. (A.3)], namely differences v~(y ~, s ) -  v~(y j, s), with Yj=Yi+ 1, 
which we cannot afford to neglect. By using (A.9), we can write the above 
gradient as 

v~(y ~, s) - v~(y J, s) = f '  
: o  

ds' ~ [P]-s'(Y' --* z) - P]_s,(y j --* z)] ~b~(z, s') 
Z 

(A.12) 

where z is a configuration with n -  1 particles in Z~. Since the marginal of  
the process of  n stirring particles on any subset of  m < n particles is again a 
stirring process, as can be easily checked, then we have from (A.12) 

v~(y i, s) - v~(y J, s) = ds' ~ P~ " --* ~_~,~y w)[0~(w', s').0~(wL s')] 
W 

(A.13) 

where w is a configuration with n particles. The symmetric part of 
P]_s,(y --* w) under the exchange of wi and wj does not contribute to 
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(A.13). With this in mind we introduce the priority list z in such a way that 
~1 = i and z2 =J.  The other entries of n are fixed in some arbitrary fashion. 
Let E denote the expectation for the coupled process with such a priority 
list, considering t - s  as initial time and y, yO as initial configuration. Let 

be the first time after t - s  such that 

[ x ~ 1 7 6  - [ x ~ 1 7 6  = x j ( t - s ) - x i ( t - s ) =  1 (A.14) 

We denote by gs.s,(21) the characteristic function that r > ( t - s ) +  
( s - s ' ) /2 ,  where s' is the time specified by (A.12) (the meaning of the label 
21 will be discussed later; it classifies the various possibilities occurring in 
the present analysis). We then have 

fO ~ 
v~(y i, s) - v~(y +, s) = ds' E(gs, s,(/q ) [-I//~(x(t - s ' )  ~, s ' )  - ~ e ( x ( t  - s') j, s ' ) ] )  

(A.15) 

because, conditioned on { ~ < t - s ' } ,  the marginal on the position of the 
stirring particles at time t - s' is symmetric under the exchange of particles 
i and j. This is an easy consequence of the fact that before z the stirring 
particles i and j have the same displacement as the corresponding inde- 
pendent ones, because of the above choice of the priority list and due to the 
definition of z. From (A.14) it then follows that at time r the positions of 
the particles i and j have the same probability as when exchanged. From 
this argument it is clear that (A.15) would hold also if g were defined as 
the characteristic function that r > t -  s', the reason for our choice of g will 
become clear later. For more details on the above argument we refer to 
ref. 10 and proceed with our analysis. 

When referring to an a-term the label 21 indicates a pair i, j [cf. (A.3)] 
and also one of the two indices, either i or j. This last indicates whether on 
the next iteration we shall pick up the term ff,(w i, s') or ff~(w j, s') in (A.15). 
Therefore, d~(y, 21, s ) =  +g-2a~(yi, yj, s) l ( y j =  y i +  1) with a plus sign if 
21 specifies the label i and the opposite sign if it specifies j. Furthermore, 
in the next expectation corresponding to the time interval t -  s, t - s '  there 
will appear the function gs, s,(21). 

In this way we have completed the description of the first iteration of 
(A.11); the successive ones are performed analogously using the same 
convention and notation introduced above. 

We iterate (A.1 t) N times, choosing N so that 

~ ( N - n ) > ; +  1 (A.16) 

822/55/3-4-6 
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and we have 

f "O ~aom- 1 v~(x, t )=  E E dSl"'" dsm 
m<~N 21,-..,)~m 

• H gs/j+l(2J)) + R (A.17) ;~jeA 
where the sum o v e r  2 1 , , , .  , A m is restricted to values of 2 such that for all 
i < m  there is a nonzero number of particles in the time interval t -s+,  
t-s++1, while at time t - s  m all particles die and none survive. R is the 
remainder term, namely it takes into account the case when some particle 
survives at time t - S s ;  therefore 

f "o f "o N- 1 R -  ~ ds l " ' "  d S  N 

21 ,.-., 2N 

xE" d,(x(t-s+),  2i, s+) H 
I-i=1 j<N:),j~A 

q 
gsj,sj+l(2j) re(X(/--SN), SN)J 

(A.18) 

where in the last expression x(t--SN) is understood to be a nonempty 
configuration. 

The expectation in (A.17) and (A.18) once m, sl,..., Sm, and 21 . . . . .  Am 

have been fixed refers to a process which, in each time interval t - S e _ l ,  
t -  s+, i = 1 ..... m, So -= 0, is a coupled process of stirring and independent 
particles, the particle number and the priority list being specified by 2~ 1 
(for i = 1 the particle number is n, the initial particle number, and the 
priority list is given by the trivial permutation, as already discussed). At the 
times t -  s+ some birth~leath~lisplacement process takes place, as specified 
by the value of 2+ and by the particle configuration at time ( t - s + ) - ,  in 
agreement with the description given before. We shall denote by P the law 
of this process and by E its expectation without explicitly writing the 
dependence on 21,..., 2m and Sl ..... sin, which should be thought of as fixed. 

A key ingredient in estimating (A.18) is the following. 

Proposition A.1. Fix m, 21 . . . . .  A m in agreement with (A.18), and 
let a be any positive number. Then for any k there is a constant c(k, a) 
such that 

E(1 - h) <~ c(k, a)~ k (A.19) 
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where h is the characteristic function of the event 

I [xi(t - s) - x,(t - s ')]  - [x~ - s) - x~ - s')]l 

<~(e-2[s-s'])l/4+~' Vi, s,s': s - s '>~e  2-a (A.20) 

Notice that here a does not have the same meaning as in the other sec- 
tions (where it denoted the number 10 6). It should also be understood 
that in (A.19) only triples i, s, s' are allowed for which particle i is present 
at the times t - s  and t - s ' ;  such triples are determined once 21 ..... i'm and 
S I , . . .  , S m are given. 

For the proof of the above proposition we refer to refs. 10 and 11 and 
references therein. 

Let ( be the partition on the state space of the above process (2i and 
s~ having been fixed), which specifies all the increments of the independent 
particles in all the time intervals t - s i ,  t - s ~ +  (s~-si+l)/2, for all i such 
that 2geA (i.e., all the a-terms). Denote by I the expectation of one of the 
terms in (A.17) obtained by fixing the values of the 2i and the s~. We then 
have 

w]here 

I<~E(  I] g+~,sj+x(2j)I~) +cek 2N (A.21) 
\ ) . j ~ A  

I ;= E~ (h i=1 f i  ]d~(x(t- si)' )~i' si)] ) (A.22) 

E~ in (A.22) denotes the conditional expectation on (. 
To derive (A.21), we have noticed that by its definition g drops out of 

the conditional expectation and we have used Proposition A.1 to estimate 
the contribution of the term containing (1 - h ) .  The factor e -2N collects all 
the factors ~-2 appearing in (A.3) (they are certainly less than N). Finally, 
c is the product of c(k, a) times another constant which bounds the 
product of the a-, b-, and c-functions. Since the sum over the 2's contains 
finitely many terms, it is enough to choose k = 2N + n in (A.21) to have the 
contribution from the last term in (A.21) bounded by the right-hand side 
of (A.1). 

To estimate (A.22), we shall exploit the presence of h to reduce the 
expectation to one involving only independent particles; we first need to 
introduce some more notation. 

N o t a t i o n .  Old particles are those initially present, i.e., those with 
labels 1 ..... n. It is, however, convenient to rename particles during their 
evolution so that it never happens that an old particle is the only particle 
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that at some given time dies and when this happens there is no other old 
particle close to it. More precisely, notice first that only in a-terms or 
c-terms can one single particle die and that in both cases there is at least 
one more particle which is involved in such an event. For  the a-term, in 
fact, two particles are needed, for the c-term a particle, say i, and a set of 
other particles, those in zJ; cf. the definition of the c-terms. If in either case, 
there is just one old particle among those involved in the event and this, 
according to our former convention, was the one which died, then we 
switch labels, so that the label of the old particle survives. The choice of the 
other particle whose label disappears (if several possibilities are present) is 
fixed in some arbitrary fashion. 

Because of the above convention, if an old particle dies and no other 
old particle is close to it, then necessarily at least another particle dies at 
the same time. We choose in some arbitrary fashion one of them (if several 
are present) and call it an auxiliary particle to the old particle which is 
dying. We then call normal a particle neither old nor auxiliary. 

Particle j is a direct descendant of particle i if there is k so that 2k 
specifies i and the birth of new particles among which there is particle j. 
Particle j is a descendant of particle i if there is a chain of direct descendant 
particles connecting i and j. 

We denote by e~(2i, x ( t - s~) , s~)  the function obtained from 
Id~(2i, x ( t - s i ) ,  si)l by dropping all conditions on the positions of normal 
particles which are contained in the characteristic functions of death events. 
More precisely, in an a-term which does not involve two old particles the 
characteristic function that these two particles should be close is dropped 
from a~. For  a b-term the same happens if the two particles involved are 
both normal (in the other cases the two particles are either both old or one 
old and the other auxiliary). In the characteristic function of a c-term we 
only keep the condition that old and auxiliary particles possibly involved 
in the event are suitably close; the condition on the normal particles, if 
present, is dropped. 

Using the above notation, we have 

I~ <~ E e~()~i, x(t - si), si) (A.23) 

We now relax the conditions contained in the characteristic functions 
referring to the deaths of the old and the auxiliary particles, the only ones 
left in (A.23). Let i be the label of an auxiliary particle, let o(i) be the label 
of the old particle to which it is auxiliary, let t(i) be the time when i is born 
and t'(i) the time when it dies, let xi [respectively Xo(i)] be the position of 
particle i [respectively o(i)] at time t(i), and finally let 3 x  ~ [respectively 
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Ax~ be the increment in the time interval t(i), t'(i) of the independent 
particle i [-respectively o(i)]. Then, if h r 0, 

I [ A x ~ 1 7 6  - [xi-Xo(o]] <~c[e-2l t ' ( i ) - t ( i ) l ]  u4+a (A.24) 

if I t ' ( i )- t ( i )[  ~> e 2-a. An analogous condition is derived for the death of a 
set of old particles; in this case the initial time is 0 and the initial positions 
are fixed by the argument of the v-function we are considering. We there- 
fore get an upper bound on I~ in (A.23) by changing the characteristic 
functions describing the deaths of the particles using conditions as in 
(A.24). If [t '( i)-t(i)[<.~ 2-", we simply bound by 1 the corresponding 
characteristic function. What we have then is not yet an expression 
involving just the evolution of independent particles; in fact, we still have 
in the argument of the characteristic functions the differences x i -Xou)  
which refer to the stirring process. 

We consider the largest among the times t(i); let it be t(k). We then 
condition on the whole process up to time t(k) and we also specify all the 
increments of the independent particles after time t(k) except for the 
increments of the independent particle k. After such conditioning, because 
of the maximality of t(k), all the characteristicfunctions are fixed except for 
the characteristic function of the event 

IAx~ <~ cEe 21t'(k)- t(k)l]u4+~ 

where C is a constant specified by the conditioning. Since we are also 
conditioning on (, the variable Ax ~ is the sum of two quantities; one is the 
sum of the increments in the time intervals t - s t ,  t - s t +  (st-Sz+ 1)/2, with 
t(k) < t -  st < t'(k) and t -  si being a time when an a-term is present. These 
increments are fixed by (, while the others have the distribution of a 
symmetric nearest neighbor random walk with intensity 1 and moving for 
a time not smaller than e -2.  � 89  Therefore, the contribution 
from this event is bounded by 

c I~ - 2 [ - t ' ( k )  - t ( k ) - I  I - , /4 + .  

uniformly on xk and Xo(k) and the conditioning on (. Note that if 
I t ' (k) - t (k)]  ~< e2 ~ then the characteristic function referring to this event is 
no longer present, according to our new notation. However, the contribu- 
tion of the death of particles k and o(k) can always be bounded by 

c[e 2 I t ' ( k ) -  t(k)l ] -1/4+a [c-l~-a[1/4 a]'] 

which holds uniformly on xk, Xo(k), the conditioning on ( and all 
t ' ( k ) - t ( k ) .  We shall further worsen the above bound by replacing 
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t ' ( k ) -  t(k) by the length of the time interval beginning at time t(k). Since 
the dependence on xk and Xo(k) has now disappeared, we can iterate the 
above procedure to the next auxiliary particle, and we keep doing this till 
all the characteristic functions concerning auxiliary particles have been 
estimated. We may still be left with characteristic functions involving 
deaths of only old particles, but now the branching structure of the process 
has been lost and we can proceed as for the symmetric simple exclusion. (H) 
Indeed, the argument is very similar to the one presented above, so we just 
state the result without further comments (notation: below and in the 
following t' stands for e 2t and s; for e 2sg): 

I~ <cg-a(N/4) ~I (s;)1/2 it, s~ll/4 
2 l E A  1 2 2 

X /1  a /~ - - 2  IBI 

2 1 S i  I t t - - S ; l  I / 4 - a  k-),i~B2 i 

• 11 it,_sjl~(~,) 1-I is;_s~+llx/4 a (1.25) 
"~i E C1 2i ~ C3 

where [A[ and [B[ equal the total number of a-terms and b-terms respec- 
tively; AI refers to a-terms where an old particle dies (so that they describe 
cases where an old particle dies close to another old particle), A~ refers to 
a-terms where no old particle dies, while B~ refers to b-terms where two old 
particles die; B 2 classifies terms where either no old particle dies or one old 
and one auxiliary particle die (the contribution coming from these terms is 
taken into account by the product over C3). C~ refers to c-terms where 
more than one old particle dies, say k > 1 old particles die; then 7(2i)= 
k /8 -ka ;  actually, a better estimate holds, namely k /4 -ka ,  but the 
previous one is, on one hand, sufficient for our purposes, and, from on the 
other, notationally more convenient, as we shall see. The set C2 collects 
both c-terms where there are births, but no auxiliary particle is born, or 
there are deaths involving one old and one auxiliary particle (as for B2, the 
contribution from these terms is taken into account by the product over 
C3); C3 covers the remaining cases. 

The first factor on the right-hand side of (A.25) compensates for the 
possibility that some of the time intervals are smaller than e 2- a in such a 
case in fact we miss the characteristic functions which give rise to the other 
factors in (A.25). We have also used (A.7) to bound the a~ and b~ coef- 
ficients, if in (A.7) e 2t >~ 1. In the opposite case we note that the left-hand 
side of (A.7) is less than 2. Therefore, Irn~(x, t ) -  m~(x + 1, t)[ 2< c(t')-1+a 

Since the estimate (A.25) is uniform on ~, we can easily derive a bound 
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on I from (A.21) because the different g's are mutually independent. In 
fact, by well-known properties of simple random walks we have that 

E(g~yj+ l(]~j)) <~ C IS]. - -  S}+ 1 ] 1/2 (A.26) 

(remember that s '-=e-2s). We go back to Eq. (A.17) and we fix one term 
in the sum over 21,..., 2m. We then consider the contribution to this term 
coming from the first term on the right-hand side of (A.21). This is boun- 
ded by the function K defined below in (A.27). We first need some new 
notation: we say that si is f i na l  if 2~ belongs to any of the sets 
{BI, B2, C1, C2}. We call k j  ..... kq the decreasing sequence of all the indices 
of the final times. Then after some easy manipulation, consisting essentially 
in increasing the domain of integration of positive functions, we get for the 
above term the bound 

q 
K~--C'~-aN/4  H F()~ki+ l ..... I~ki+l ; t ' )  (A.27)  

i - 1  

where for any ie  {1 ..... q} setting {2'1,..., 2~} -- {k,+,,..-, 2~,+~} gives 

F ( , V l  , . . . ,  ,~'~ ; C ) =  d s l  . . . d s , ,  

k k 

(A.28) 

where t' = e-2t, while IC'] denotes the number of indices i such that 2; e C. 
Furthermore, u i = - l / 4 + a  if 2 ; e A 1 u B 1 ,  =7(2;) if 2 ;eC1,  and =0  
otherwise, vi = -1 /2  if 2 ; e A  and = - 1  + a  if eB. Finally, wi= -1 /2  if 
2"eA and = - l / 4 + a i f 2 / e C  3. 

It is not hard to see that 

t F(21,..., zk,"" t') = (t') ( 1/4+a){IAil+lBil+Ic~l)(t')-Ilcill+"lB2r(e2t')lcl (A.29) 

IC;ll= ~ ~(,~;) (A.30) 
~ ~ c i 

as is intuitively clear by using a scaling argument in (A.28). (We are using 
the same notational convention as before, so that, for instance, tA'I[ 
denotes the number of indices i for which ).; e A1.) 

We refer to ref. 11 for a more detailed analysis of the asymptotics of 
integrals like those in (A.28) and we proceed in proving (A.1). By multi- 
plying all the F-functions, as required in (A.27), we get the same bound as 



562 Calderoni et  al. 

in (A.29) with p r i m e d  sets replaced by unpr imed  ones. Notice then that each 
element in A~ and C3 corresponds to the death of one old particle, each 
element in B1 to the death of two old particles, while 

IIC1 It (1/8 - a)IIIC1 Ill 

where IH C1 Ill is the total number of old particles which die according to C 1 , 

Hence, 

n--IAl l  + 2LBll + IIIC1 Ill + 1C31 

1 n 1 
I/~l + IBll + ~  [llCllll + 1c31 = ~ - t - ~  ( [AI[+ IC3I) 

so that 

K<~ s ') - ' /8(t ')"(IAll  + IB, I + IB21 + Ic31 + Ill c, Ill )(szt,)Icl (A.31) 

If I CI > 0, then (82t,)Icl< 8~, SO that by choosing a small enough we get 

K<~ c(e-2t)  n/8 

as needed for proving (A.1). If, on the other hand, IC] =0,  then the 
Glauber interaction never acts and the corresponding terms in (A.17) are 
the same as those obtained for the stirring alone: for these the estimate 
(A.1) is proven in ref. 11. 

We now examine the generic term in the sum in (A.18). We use the 
same procedure as above, bounding the v-function at time t -  SN by 2 N. We 
get again the same structure as in (A.27) and (A.28) except for the fact that 
the last time SN might not be final according to the definition stated before 
(A.27). The corresponding 2N might in fact indicate also any a- or C2 
term. In particular, if this is an a-term, then we miss a factor 
[e - 2(SN -- SN + 1 ] -- 1/2 [-since we are not iterating an (N + 1 )th time ]. There- 
fore we get the same estimates as in (A.29) and (A.31) with the possible 
presence of a further e 1 factor. Notice also that in this new case the total 
number of old particles which die might be less than n. If this number is 
k, we shall get only a contribution from deaths which go like ( t ' )  -~/s,  
besides a divergent factor with exponent proportional to a, the same as 
before. The point is that there is a lower bound on IC] and the converging 
factor (e2t ') Ici alone will be enough for proving (A.1), if N is large enough, 
as specified by (A.16). In fact, we have that 

tAt + IBI + IC1 = N  
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by definition. Furthermore, the number of dead particles is not larger than 
the total number of particles, which is bounded by n + 41CI, because at 
most four new particles can be created at each time. Therefore 

IAI + IRIBI ~<n+4[CI 

tAI + tBt ~<n+4tC{ 

IAI + IBI + I f l - -g<<-n+5 lCI  

By (A.16), 

e (r 1 < en/8 (A.32) 

Furthermore, by taking a small enough, we see that the same inequality 
holds even in the left-hand side is multiplied by e 5aN/4, which bounds the 
divergent factor in (A.31). Therefore (A.18) is also bounded as required by 
(A.1); hence (A.1) is proven. 

We close this appendix by remarking that as in ref. 10 it is possible to 
extend (A.1) and prove that the same inequality holds for t ranging on the 
compacts. This extension does not require too much extra work, but since 
we do not need it in the proof of Theorem 2.1, we omit it. 

APPENDIX B 

Proof of Lomma 4.2. First notice that (4.1) can be written as 

fl m~(x, t; a)= ~ P~(x--, z) a(z) + ds ~ P~_ s(X--, z) ~(z, m~.s) (B.1) 
2 Z 

where P~ is the transition probability of a symmetric random walk which 
jumps on nearest neighbor sites with intensity e - 2 +  2 and ~ is obtained 
from g by dropping the first term on the right-hand side of (4.2). 

Proof of (4. 1 la). For t ~> e 2/5 we have 

P,(x z)r <~ 

because LI~II ~<d 8a. From (4.1) 

f2 Im~(x,t;~)l<~lt~rt+c d s s u p l m ~ ( z , s ; f f ) ]  3 , e2/5 ~ t ~<2E - ~  
z 

and this integral inequality yields (4.11a) because If~ll ~< d 8a. 
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Proof of (4.11b). This is a consequence of (B.1). In fact, f rom 
(4.11 a), I~(z, m,,~)[ ~< c [I a It 3 if s > e 2/5 (and < c if s ~< e 2/5). Since for all b' > 0 
and all n there is c so that  

then 

sup I P ~ ( x ~ z ) - P ~ , ( x - - + z +  1)1 <~ce ~ Vt>~e b' (B.2) 
z 

Proof of (4. 12). 
(B.2) we get for any n 

~ P~(x ~ z) ~(z) - ~ <<. ce" 

We fix k and b as in (4.12) and from (B.1) and 

We choose N so that  

Ng2 • 98a•  a ~ /~k 

Then, after N i terat ions of (B.3), we obta in  (4.12) if we had chosen n >~ k 
in (B.3). 

Proof of  (4. 13). Let a (") be a sequence as in L e m m a  4.2. Define 

qb, ( t )=suplm~(x , t ;a) -m~(x , t -near; t r (" ) ) ] ,  near<t<~(n+l)e~r 
z 

(B.5) 

for n = 0 ..... ~, where ~ear ~< 2 e - a  and ~ is the largest integer for which this 
holds. Not ice  that  qSo(t ) = 0. Fo r  1 ~<n ~<~ we have, by (B.1), 

~bn(t) ~< sup - ,  IPt_~or(X ~ z)[m~(z, near; ~) o-(~(z)]l 
z 

fO near 
+ sup [~(z,m~(.,s+ne%;tr))-~,(z,m~(.,s;~r(n)))[ 

z 

sup [m~(x + 1, t; a) - m~(x, t; a)I 
z 

<~ce'+ d s s u p l g ( x + l , m ~ , s ) - g ( x ,  mu) l  (B.3) 
e b/N z 

where e b <  t ~<2e - a  and N is a positive integer which will be specified 
below. 

By (4.11), then, 

sup ]~(x + 1, ms, s) - ~(x, m~,s) [ ~< ce 2 • 98~ sup ]m~(x + 1, s; a) - m~(x, s; a)] 
z z 

(B.4) 
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We use (B.4) and we have for t - n e " r > ~ e  2/5 

t n ~ a r  

qS"( t )<"q) ' - l (near)+e~ " + c f  s2/5 g2x98a(Dn(S+near)+ce2/5  

This integral inequality yields for t -  near >~ e2/5 

q~, ( t )<- . .exp{ce2•  ] (B.6) 

Hence, setting c(e) = ce 2 • 98a(~ar -- e2/5), 

n - - 1  

qs (t)<< ce c~s) ~ e~CS)ke ~ ~ 
k = O  

--  a - ~ c e  ~ 3 a  ~ Cg n -~ 

and this completes the proof of Lemma 4.2. 

Proof  o f  Proposi t ion 4.4. For notational simplicity let us fix the the 
sign of ~ and let us assume that it is positive. Let ~('), O 4 n ~ N ,  
e-3oo~ ~ Near ~ e 3oo~ + Te 1/2 be as in Proposition 4.4. For near + e 2/5 
t 4 (n + 1)ear we can write, using (A.7), 

ms(x, t; (r (")) >~ ~ -s _~ a(.)) Ps2/5(x z) m~(z, e2/5; 
z 

z 

x [ms(z , s; a(')) 3 -- 9ms(z , s; a('))sJ -- ce (B.7) 

Denote by 7s(x, t) (~2/5<< t <~ ear) the solution to the equation 

y~(x, t) = ~ P~_ ~:/,(x ~ z)Em~(z, e2/5; ~(')) - ce] 
z 

- -~  _ _  9 Z + fs'2/~ ds ~ P~ ~(x --* z)[y,(z, s) 3 gTs( , s) s] 
z 

(B.8) 

Then m~(x, t - n e " r ;  a(')) ~> 7~(x, t - n e a r ) .  On the other hand, (B.8) has the 
same monotonicity properties as the reaction-diffusion equation (2.7), 
namely if a solution to (B.8) is not smaller than another solution to (B.8) 
at some time, then it stays so at all later times. Since 

ms(x, e2/5; a(')) ~> ~ P~2/,(x -~ z) m~(z, ear; ~("-  51) _ e~ ~ _ c,e2/5 (B.9) 
z 
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we deduce that 

m r ( x  ' ear;  if(n)) ~> a ,  + 1 (B.IO) 

where an + ~ is the value at ear of the solution to the equation 

d 
- - z = z 3 - - 9 z  5 , e2/5 < . . . t ~ e a r  (B.1 la) 
d t  

z ( e  2/5) = an - ~ -  a _ c,e2/5 _ ce - an - c~ ~ - ~ (B.1 lb) 

(the value of the constant c keeps changing from one equation to another). 
In an analogous fashion we show that 

m ~ ( z ,  (n  + 1)ear; a (~)) ~< bn+ 1 

where b ,+ t  is the value at ear of the solution to (B.1 la) with initial value 

z ( e  2/5) = b .  + ce ~ ~ (B.12) 

Finally, from (4.12) and (4.14), setting f i=e  2~,.we have 

lim (bn  - ae )  = 0 
e ~ O  

uniformly on r and on the choice of a ("), n ~< ft. It is now easy to check that 
bN and aN converge to m* as e--* 0; we omit the details. 

A P P E N D I X  C 

P r o o f  o f  L e m m a s  3 . 2  a n d  3 . 3 .  We consider only q = 1/4; the other 
cases are analogous and easier to study. When we make explicit 7](s) 7](t) 
we obtain several terms: since they are all similar, we shall explicitly study 
only one of them, the only one which does not vanish when e--*O [cf., 
however, the remark after (C.17) and the conclusion of the proof of 
Lemma 3.3]. So the term we are actually going to consider here is 
E ( ~ ( s )  ~ ( t ) ) ,  where 

y~=f'(e-l/4#)e TM ~ a(x- 1)a(x)a(x+ 1) 
x E Z~  

(c.1) 

The expectation above refers to the process starting from a configuration 
a such that I~] ~ e  1/4 lOa and Hcr[[ ~<e 1/4 12a, e ~<..S<--.t<<.2e - a  

The analysis is elementary since we have already established the main 
ingredients, i.e., (4.9) and (4.11); however, to take full advantage of them 
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where 

we need to use many times the integration by parts formula which relates 
the semigroup with generator L ' to that with generator e-2Lo [cf. (2.1)]: 
this makes the proof lengthy, since we have to estimate separately many 
different terms. They will always have the structure 

g(8-'/4~) (I ,~(x,) 
i = 1  

where g is a C ~~ real-valued function bounded with all its derivatives; 
x = (xl ,..., x,)  is an n-tuplet of distinct sites in Z,  (notice that ~7 ~ is a sum 
of terms having this form). In the sequel we shall simply write g for 
g(e-1/4#). On the above class of functions our generators act as follows: 

n 

while 

a(x~) =2Lo g a(x,) + 2 F~(g, x ) +  ~. R~(g, x) (C.3) 
i = 1  i = l  i = 1  i : l  

F~(g, x)= g ~ ~ b(A) l( { A + xi} c~ {x/xi} : ~ ) 
i = l  A 

and b ( A ) = 0  unless d = { - 1 , 0 , 1 } ,  {2,3,4},  in which cases it equals 
-1/3, 3/2, respectively, while 

F~2(g, x) = g Z ~ a(F) I ( { F +  x,} a {x/x~} = 5~3) 
i = 1  F 

and a ( F ) = 0  unless F - -{0 ,  1 ,2 ,3 ,4} ,  { - 1 ,  1 ,2 ,3 ,4} ,  { - 1 , 0 , 2 , 3 , 4 } ,  in 
which cases it equals -3 /4 ,  3/8, -3 /4 ,  respectively. 

Furthermore, 

f~(g, x ) =  - 2 e  3/4 E c(y, ~r) a(y) gy (I ~r(xj) (C.4c) 
d(y, x)  > 6 j = 1 

R~(g, x) = g ~ Z b(m) l({a + xi} ~ {x/x~} # ;~) 
i - - I  A 
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R~z(g, x ) =  g ~ Za(F) l({F+xi} ~ {x/xi} ~ )  
i = 1  F 

i , j  u = l  u ~ i , j  I 

R~4(g, x ) =  --2e 3/4 E gyc(y, tr) tr(y) f l  tr(xi) (C.5d) 
d ( y , x )  ~< 6 i = 1  

where gx, xeZ~ is a short hand for the function g' computed as some 
suitable point in the interval with endpoints ~-'/46 and e-1/46-2e3/4a(x) 
(this comes from a remainder term in a Taylor expansion). Furthermore, 
d(y, x) denotes the distance of y from x. 

The terms F~ + R] and F~ + R~ take into account the action of La on 
]-I o'(xi) as if g were not present; the reason for splitting them into R and 
F functions will become clear later. The term R~ also arises from the action 
of La  on H o-(x/): the intensity c(x,a) contains a term equal to 
1 - �89 + 1) ~(x) - �89 - 1 ) a(x). This acts on the above product just as 
2Lo when Ixi-xj l  > 1. When this condition is not fulfilled there is a correc- 
ting term: R~. 

Because of the presence of the function g, more terms need to be 
added. In fact, when a spin flips, say at x, then g(e 1/46) changes into 
g(e 1/46-2e3/4a(x)). Expanding to first order, we obtain F~+R~4. This 
explains the logic behind the expressions in (C.4) and (C.5); the actual 
proof is just computational and it is omitted. 

Denoting by P~ the transition probability for the process with 
generator ( e -2+  2)Lo, we have, using the integration-by-parts formula, 

E(~'(s) ~'(t)) = d/2 ~ P~ s(X- 1, x, x + 1 ~ z) 
X, y ,  X 

x E [ l ( z  c", {y--  1, y, y +  1} = (~)f'(t3-1/4ffs)2 

3 1 

•  

i + ds' ~ -~ P, s,(X- 1, x, x +  1 ~ z )  
x , z  

[ i ,}1 x E ~(s) f ~(f , s') + R~(f , s' (C.6) 
i 1 i = 1  
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where R~ is obtained from the first term on the right-hand side of (C.6) by 
replacing the set {z c~ { y -  1, y, y + 1 } = ~5} by its complement. 

We start by considering the R terms in the integral in (C.6), hereafter 
referred to as Ij, j = 1,..., 4, and we are going to prove that they vanish as 
some positive power of e when e ~ 0. We have by the Cauch~Schwarz  
inequality 

[Ijl <~ ce 1/2 f ds' E [ a ( x -  1, s) ~(y - i, s)] 
*s i= --1 

8 ~ I e I x~rc, ~,(z) E R j ( f  , z + x )  R : ( f  , z +  y (C.7) 
Z \X, y 

We have used the notation 

~ ( z )  = P ~ ( -  1, 0, 1 --, z) (C.8a) 

z + x =  (z~ + x,..., z, + x )  (C.8b) 

and exploited the translational invariance of the stirring process in Z~, as 
well as the fact that f '  is bounded. 

By (4.11a) and (4.9) the first expectation grows like e -1, the leading 
term occurring when x = y, so that 

l/i[ ~ c ds' ~ ~ _ , , ( z )  E R ] ( f ' , z + x )  R ~ ( f ' , z + y )  
z 

1/2 

(C.9) 

Case j<<,3 in (C.9). By definition, R ~ = 0  when j~<3 and zCA, 
where A denotes the set of all z such that at least two sites in z are at dis- 
tance less than 6. Furthermore, for n = 3 each term in R~ contains at least 
one spin. Hence, if in (C.9) J y - x [ > 6 ,  then the expectation is over a 
product of at least two spins. We add and subtract mr(-, s'; o) and expand 
the product. In this way we obtain sums of products of v-functions and 
m~-functions. By using (4.11a), (4.9), and the assumptions on the initial 
configuration 0, we find the bound c Ikrfl 2 ~< e2(I/4-- 12a). Therefore for j ~< 3 

1 6 1 ~ c f f ~ z  s'(Z) I(ZCA){~ l~1 /4-12a . - t -8-1 /2  ) (c.lo) 

The term e-~/2 comes from the sum over l Y - x ]  ~< 6. 
To bound the sum over z we use the following probability estimate. 

k e m m a  e l .  For k < n denote by A~ the set of z = (zl,..., z,,) having 
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k distinct pairs of sites such that in each pair the sites are at distance not 
larger than 6. Then 

~ P~(x ~ z) l (zcA~)<~c(e-2t)  1/2-(k-1)(1-a)/4 (C.11) 
z 

uniformly on x and t on the compacts, while for all z, x, and t 

P~(x --, z) ~ [ I  P~(xi--, zj (cA2) 
i = l  j 1 

The inequality (C.11) follows from the coupling between the stirring 
and the independent processes introduced in Appendix A. We refer to 
ref. 11 and to the Appendix A in ref. 10. The inequality (C.12) is proven in 
ref. 12. 

From (C.11) we then get ( A c A  3 and t - s ~ e  a) 

f 
l I/jl ~ ~1/4-- 12a ds' I t - - s ' l - 1 / 2 ~  C,I/4-12t'~-a/2 

~s 

which completes the analysis of Ij when j ~< 3. 

C1. Analysis of  14 

From (C.9) we have 

f5 l li4] ~ e ds' ~ Tc~_ s,(z)e 3/4 
�9 z 

X [ - I ( z ~ A ) { ~  2/36(1/4 12a)"l-~ 1}1/2+ 1 ( z ~ A ) 8 - 1 ]  (C .13 )  

because if z r A, then R] = Zx ~x, where rx is the translate by x of %, and 
Vo is a finite sum of terms such that in each of them there is a product of 
at least three spins. Hence when making explicit the sums in (C.9) we see 
that for each x there are only finitely many values of y such that ~xZy is 
not a product of spins in six different sites. In this latter case by (4.11a) and 
(4.9) we get the bound e 6(1/4 12a) X 6 -2 .  In the other case we simply bound 
~ by a constant, and ce 1 bounds the number of such terms. If z E A, we 
bound R] by a constant and this gives the last term in (C.13). Finally, the 
factor e3/4 in (C.13) comes from the definition of R]. 

From (C.13) and (C.11), therefore, 114[<~ce 1/4 a, the factor ~ a 
coming from the time integral. 

We complete the analysis of the R terms in (C.6) with the estimate of 
Rg as follows. 
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C2. Estimate of R~ 

We have, using the same notation as above, 

R~o -~- 61/2 ~ eet_s(X - 1, x ,  x --~ 1 ~ z )  
x,z 

xil(z6A)E(f'2~ {j~ia(zJ'S)~Ae(A) wcA 

+ l ( z e A ) E  f'221(d(y,z)<~l a(y - i , s )  I-I a(zi, s) 
y i= 1 i~ l  

(r 

where e (A)=0  unless A =  { - 2 , - 1 } ,  { - 1 ,  1}, {1, 2}, in which cases it 
has value 1. The first term in (C.14) is bounded, using Cauchy- 
Schwartz, by 

C61/2~x i = l  ~e(A)E , ~_s(Z) n~_s(Z ' ) l (z r  

<<.c6m6 -1 rC~_s(Z) rt~_,(z') l(Iz c~ z'i =k)  
' k = 0  

[6 (1 /4 - -  12a)(6 2k) ]  1/2 

(c.15) 

where we have used (4.9) and (4.11a), as usual, to estimate the product of 
spins possibly present; actually, the estimate is obviously better when k = 0. 
By (C.12) for any z it easily follows that for k~> 1 

~rc~_,(z') l(Iz-z'l =k)-..<cl-6 2(t-s)]-~/2 
z' 

Hence, the contribution to R~ from {z 6 A } goes like 

3 
Z 6--1/266/8--36a6 (1/4-- 12a)k+k/2(l__S)--k/4 

k = O  

Hence, the integral over t - s  (which appears in Lemmas 3.2 and 3.3) 
vanishes like e 1/4- 36a 

822/55/3-4-7 
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Let us now go back to (C.14) and consider the contribution of 
{z e A }. This is easy. We can afford to bound f '  and a by constants and 
we get a bound which goes like 

- - l e l / 2  L ~ t - - s (  z ~" A) <<. c~1/2(t-- s)-1/2 
z 

[the factor e -1 comes from the sum over x in (C.14)], which, integrated 
over t, vanishes a s  ~ 1 / 2 - a / 2 .  

03.  Analysis of  the F Terms 

We begin with F~. Let 

z 
d ( y , x )  > 6 A x e  

(C.16) 

[cf. (C.3)]. We want to show that the contribution of F~-F;  in (C.6) 
vanishes like some positive power of ~. Let 

F =  --283/4 2 C(W, O) O(w)Egw-- g'(e 1/4a)] I~I (7(Zj) 
d(w, z) > 6 j = 1 

and call I the contribution coming from such an F; we are actually inter- 
ested in the case g = f '  and n = 3. By the definition of gw the square 
bracket term is bounded by ce 3/4. Then, by using Cauchy-Schwarz [-as 
when deriving (C.7)] for each fixed z and w in F we get 

[1[ <-eL ds' e3/z 2 rc~-s(Z) Z E 2 ~(x + zi, s') 
z w L d ( w , x + z ) > 6  d ( w , y + z ) > 6  i 

l 31/2 

f - - S  t ds'/~1/2[/~--2/;6(1/4-- lZa) . .~/~--1]1/2 ~< C 

c l? l /4 -  a 

by (4.9) and (4.11a), as usual by now. 
This proves that we can change gy into g'(e 1/46) in F~, the difference 

giving vanishing contribution to (C.6). On the other hand, the difference 
between such a new F~ and F~ is given by 

g 'e3/2 Z [ a ( y + l ) + a ( y - 1 ) - 2 a ( y ) ]  [I a(xi) 
d(y,x) > 6 i =  1 
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This is a telescopic sum, so that only the boundary terms contribute. The 
resu]ting expression has then the same structure as R] and gives the same 
contribution to (C.6) as R~, hence it is neglected. 

All this proves that we can take the sum in (C.6) which refers to the 
F functions with i ranging from 0 to 2 (rather than from 1 to 3). The func- 
tions FT, i = 0, 1, 2, are sum of terms like g(e ~/46) 1-I']_ ~ a(xe) with n = 5 
for F~, n = 7 for F~, n = 6, 8 for F6. We call w such sites and the relevant 
quantity to estimate is (g below might either be f '  or f " ,  according to 
cases) 

I'=e~/4 ~ EI~](s) g(e-a/a6~) fi cr(wi, s')] (C.17) 
x i = 1  

Notice that the terms appearing in y~ but not in ~7 ~ have this form, so that 
their analysis can be done similarly to the following one. From (C.17), 
using the integration-by-parts formula, we get I '  = I~ + I~, where 

s '  

I; = f~ du el/4 Z Z -~ z) P,, ~ ( x + w ~  
x z 

[ {• 4 }1 x E ~(s) f~(g, z) + ~ R~(g, z) 
i = 1  i = 1  

(C.18a) 

' P, ,_ w z ) E  ~(s )  a(z , ,  s 
x z i = l  

C4. Contribution of the R Functions to/~ 

If z~A~,  k>~2, since tR~I ~<c we get the following bound (using 
Cauchy-Schwarz): 

s '  

ce- l f l  d u ~ F ~ , _ ~ ( w ~ z )  l ( z~A~,k~>2)  
z 

5' 
<<, ce 1 fs du [ e - 2 ( s ' -  u)]-(3/4 a) 

1 / 2  - -  2 a  - -  a/4 

If z ~ AT, then the same analysis as when n = 3 applies, since we know that 
the R functions contain at least one spin, hence these terms, too, vanish 
like a positive power of e. 
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C5. C o n t r i b u t i o n  of  the  F Funct ions  to  I~ 

The functions F~, i = 1, 2, have the fol lowing structure: 

i = 1  j ~ i  

where 

Calderoni et  aL 

x G A q - z i  

and I A[=  1, 3, 5 and it is contained in [ - 1 , 4 ] .  Furthermore, 
{zjc~ (A +zi)  } = ~ .  Therefore, their contribution to 11' is bounded by 

c ~  E Ps'-,(x-~ +w--* -~ 
x " �9 i-z,  z '  

xl(Vj:/=i: zj~ {A+ zi}=f2~) l(Vjr z'jc~ {A+z;}=~J) 
-] 1/2 

x a.~(zi, u) ~A(z;, u) 1-[ ~ u) a(z;,.u)[ 
j # i  A 

which by (C.12), (4.9), and (4.11a) is bounded by 

c~-I f du ~(1/4-12a)(2n-2k)(e-2[S,__Ul)(k A 3)/2 C~1/4 61a 
~s k 0 

since n~> 5 (and the last inequality refers to n =  5). For  Fj  we proceed 
analogously: we have an extra factor e 1/4 ( = e  IG3/4), which takes into 
account the sum over y in (C.4c). Hence, n ~> 6 and we get the bound 

C~ 1 1 / 4 ~ ( 1 / 4 -  12a )6~  a ~ C,~1/4 73a 

The estimate for Is is very similar to that for R~ and it is omitted. 
We have therefore proven that all terms in (C.6) vanish like some 

positive power of e except for the first one on the right-hand side of (C.6). 
Set w =  (zl, z2, z3, y -  1, y, y +  1); then we have to study 

( 6 ) 
J-E-3/2E f ' (e 1/4ffs)2 l-I cr(wi, s) (C.19) 

i = 1  

The factor e-3/2 comes from the product of the factor e~/2 present in (C.6) 
and the extra factor e 2 added to take care of the double sum over x and 
y in (C.6). Since our estimates will be uniform on w, these sums just 
produce the diverging factor e 2 that we are considering. 
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Using the integration-by-parts formula, we get 

J = e - 3 / 2 ~ p ; ( w ~ z ) E  a(zi, 1)f'(e-1/4~l)2 
z i 

3j2 f ds, y P,  ~,(w--,z)E F~(f'2, s')+ R~(f'2, s ') 
' a l  z i 1 i =  1 

(c.20) 

The integral term in (C.20) can be studied using the same techniques intro- 
duced above; we omit the details and we take for proven that it vanishes 
as a positive power of e. To study the first term on the right-hand side of 
(C.20), we use the following lemma. 

Le rnma  C.2. For  any k~> 2 and for any n there is c so that 

sup I/5~(w ~ z) - Ps~(W --* z')l ~< c~ n (C.21) 
w,z,z' 

where w = (wl ..... wk) and s ~> e a, the constant c being independent of s 
and of the actual choice of w). 

ProoL Since P;(w --, z) = P;(z --, w) it is enough to estimate 
IP~(z--'w)-P~s(Z ' - - 'w)l .  Assume z;=zi for all i >  1 (the general case is 
easily obtained from this by a telescopic sum). Let x = (xl ..... xk+ i), x i =  z~ 
for i--  1,..., k and xk+l = z]. Then, letting r be the stopping time introduced 
before (A.14) and referring to the particles with labels 1 and k + 1, we have 
that for all n there is c so that 

IP~(z --, w)  - P~(z '  ~ w)l  ~< P ( r  > s)  ~< ce ~ 

where P(r  > s )  is the probability that an independent symmetric random 
walk in Z,  [and moving with intensity 2 ( e - 2 + 2 ) j u m p i n g  on nearest 
neighbor sites starting from z'l - z ~ ]  does not reach the origin before s. The 
last inequality follows then from classical estimates on random walks and 
by the arbitrariness of n. 

From (C.21) it easily follows that the first term on the right-hand side 
of (C.20) differs from 

E[e- 3/2 f , (g  -1/4~1 )2 (ffl)6"] (C.22) 

by a quantity which vanishes when e ~ 0. On the other hand, the expres- 
sion inside the expectation in (C.22) equals the function x6f ' (x )  2, 
x = e-1/461, which is uniformly bounded, i.e., independently of the value of 
ff~; hence, Lemma 3.2 is proven. Notice that we can repeat the whole 
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procedure starting from the function (e 1/46)3 rather than from 'F and we 
would obtain just the same result, since the only contribution comes when 
we apply the stirring generator in the integration-by-parts formula and 
after a time of the order of e -a the initial sites of the spins are completely 
forgotten. This proves that for some positive/3 

IEE{~Z - (x , )  }{~-(x~)~}]l ~<d (C.23) 

When replacing ~ by ~ we get an additional contribution coming from 
products of more spins. The same analysis presented above allows us to 
conclude that the leading contribution behaves as 

e[~ 3/2/'(~-1/461)2 (61) k] (c.24) 

where k > 6 .  By using Cauchy-Schwarz we find the following bound 
on (C.24): 

cE( [ 6132(k- 6))1/2 

By (4.9) and (4.10) this vanishes like some positive power of e, hence, 
Lemma 3.3 is also proven. 

Proof of (3.22). After making explicit the square in (3.22) we obtain 
a double sum over x and y of products h(x, t) h(y, t). The function h(x, t) 
is obtained by shifting by x the cylinder function h(0, t). We can neglect the 
cases where the two functions have nondisjoint bases; they vanish like E 
because of the normalization in (3.22). By making explicit the product of 
the two functions we see that this is a sum of products of spins. But we are 
now in the conditions discussed during the proof of Lemmas 3.2 and 3.3; 
hence, the expectation of the above product vanishes like a positive power 
of e. We omit the details. 
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